E
M. Ketels et al.
Letter
Synlett
Acknowledgment
R.; Ketels, M.; Knochel, P. Org. Lett. 2016, 18, 828. (d) Petersen, T.
P.; Becker, M. R.; Knochel, P. Angew. Chem. Int. Ed. 2014, 53,
7933.
We thank the BASF SE (Ludwigshafen) and Albermarle (Germany) for
the generous gift of chemicals and the DIP (German-Israeli Project
Cooperation) for financial support. M.K. thanks the Foundation of
German Business for a scholarship.
(8) Flow reactions were performed with commercially available
equipment from Uniqsis Ltd (FlowSyn; http://www.uniqsis.com).
(9) Using the same stoichiometry in a batch reaction leads to a
lower conversion and poorer yields are obtained.
(10) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem.
1988, 53, 2390.
Supporting Information
(11) (a) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc.
1980, 102, 3298. (b) Negishi, E. Acc. Chem. Res. 1982, 15, 340.
(12) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
(13) General Procedure for the In situ Trapping Metalation of 1,2-
Dicyanobenzene in Flow followed by the Reaction with an
Electrophile in Batch: The flow system (FlowSyn, Uniqsis) was
dried by flushing it with anhyd THF (flow rate of all pumps:
1.00 mL/min, run-time: 30 min). Injection loop A (1.0 mL) was
loaded with TMPLi (0.60–0.66 M in anhyd THF; 1.5 equiv) and
injection loop B (1.0 mL) was loaded with the reactant solution
(0.40–0.43 M in anhyd THF containing 0.5 equiv ZnCl2 additive).
The solutions were simultaneously injected into separate THF
streams (pump A and B, flow rates: 1.50 mL/min), which passed
a pre-cooling loop (1 mL, residence time: 40 s, 0 °C) respec-
tively, before they were mixed in a coiled reactor (1 mL; resi-
dence time: 20 s, 0 °C). The combined streams were collected in
a flame-dried, argon flushed 25-mL flask equipped with a mag-
netic stirrer and a septum containing the electrophile (1.1
equiv) dissolved in anhyd THF (1 mL). Then, the reaction
mixture was further stirred for the indicated time at the indi-
cated temperature.
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(1) (a) Zhao, Y.; Snieckus, V. Chem. Commun. 2016, 52, 11224.
(b) Fuentes, M. A.; Kennedy, A. R.; Mulvey, R. E.; Parkinson, J. A.;
Rantanen, T.; Robertson, S. D.; Snieckus, V. Chem. Eur. J. 2015,
21, 14812. (c) Zhao, Y.; Snieckus, V. J. Am. Chem. Soc. 2014, 136,
11224. (d) Schneider, C.; David, E.; Toutov, A. A.; Snieckus, V.
Angew. Chem. Int. Ed. 2012, 11, 2722. (e) Chauder, B. A.; Kalinin,
A. V.; Snieckus, V. Synthesis 2001, 140. (f) Beaulieu, F.; Snieckus,
V. Synthesis 1991, 112. (g) Snieckus, V. Chem. Rev. 1990, 90, 879.
(h) Beak, P.; Snieckus, V. Acc. Chem. Res. 1982, 15, 306.
(i) Snieckus, V. Heterocycles 1980, 14, 1649. (j) Watanabe, M.;
Snieckus, V. J. Am. Chem. Soc. 1980, 102, 1457.
(2) (a) Nicolaou, K. C.; Chen, J. S.; Edmonds, D. J.; Estrada, A. A.
Angew. Chem. Int. Ed. 2009, 48, 660. (b) Chinchilla, R.; Nájera, C.;
Yus, M. Tetrahedron 2005, 61, 3139. (c) Nicolaou, K. C.;
Sorensen, E. J. In Classics in Total Synthesis; Wiley-VCH: Wein-
heim, 1996. (d) Nafe, J.; Knochel, P. Synthesis 2016, 48, 103.
(e) Nicolaou, K. C.; Snyder, S. A. In Classics in Total Synthesis II;
Wiley-VCH: Weinheim, 2003. (f) Lima, F.; Kabeshov, M. A.; Tran,
D. N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel,
B.; Ley, S. V. Angew. Chem. Int. Ed. 2016, 55, 14085. (g) Kim, J. Y.;
Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.;
Heeger, A. J. Science 2007, 317, 222. (h) Kohei, M.; Schwaerzer,
K.; Karaghiosoff, K.; Knochel, P. Synthesis 2016, 48, 3141.
(i) Clarke, T.; Ballantyne, A.; Jamieson, F.; Brabec, C.; Nelson, J.;
Durrant, J. Chem. Commun. 2009, 89. (j) Bellan, B.; Kuzmina, O.
M.; Vetsova, V. A.; Knochel, P. Synthesis 2017, 49, 188.
4′-Methoxy-[1,1′-biphenyl]-2,3-dicarbonitrile (3h): Accord-
ing to the typical procedure, injection loops A and B were
loaded with solutions of 1,2-dicyanobenzene (1a; 0.44 M con-
taining 0.5 equiv ZnCl2, 1 mL) and TMPLi (0.66 M, 1 mL), respec-
tively. After injection and in situ trapping metalation the com-
bined streams were collected in a flask containing 4-iodoanisol
(113 mg, 0.49 mmol, 1.1 equiv), Pd(OAc)2 (2.0 mg, 2 mol%) and
SPhos (7.2 mg, 4 mol%) dissolved in THF (1 mL) at r.t. The reac-
tion mixture was stirred overnight before it was quenched with
sat. NH4Cl (15 mL). The aq. layer was extracted with EtOAc (3 ×
15 mL), the combined organic fractions were dried over anhyd
Mg2SO4, filtrated and the solvent was removed in vacuo. Purifi-
cation by flash column chromatography (silica gel; i-hexane–
EtOAc, 9:1) afforded 3h as a pale brown solid (89 mg, 0.38
mmol, 87%; mp 200.3–201.5 °C). IR (Diamond-ATR, neat): 2225,
1608, 1580, 1523, 1514, 1460, 1442, 1308, 1298, 1249, 1178,
1117, 1082, 1026, 991, 861, 840, 820, 802, 783, 769, 743, 725,
(3) (a) Tejerina, L.; Martínez-Díaz, M. V.; Nazeeruddin, M. K.;
Torres, T. Chem. Eur. J. 2016, 22, 4369. (b) Yamamoto, S.; Zhang,
A.; Stillmann, M. J.; Kobayashi, N.; Kimura, M. Chem. Eur. J. 2016,
22, 18760. (c) Xu, H.; Chan, W.-K.; Ng, D. K. P. Synthesis 2009,
1791. (d) Senge, M. O.; Sergeeva, N. N. In The Chemistry of
Organozinc Compounds; Rappoport, Z.; Marek, I., Eds.; John
Wiley & Sons., Ltd: Chichester, 2006, 395.
(4) Frischmuth, A.; Fernández, M.; Barl, N. M.; Achrainer, F.; Zipse,
H.; Berionni, G.; Mayr, H.; Karaghiosoff, K.; Knochel, P. Angew.
Chem. Int. Ed. 2014, 53, 7928.
683 cm–1 1H NMR (400 MHz, CDCl3): δ = 7.72–7.76 (m, 3 H),
.
7.49–7.55 (m, 2 H), 7.02–7.06 (m, 2 H), 3.88 (s, 3 H). 13C NMR
(101 MHz, CDCl3): δ = 161.0, 147.2, 134.1, 133.0, 131.7, 130.2,
128.8, 117.5, 115.9, 115.7, 114.7, 114.2, 55.6. MS (EI, 70 eV): m/z
(%) = 235 (18), 234 (100), 219 (6), 191 (28), 165 (10), 164 (10),
138 (5), 43 (6). HRMS (EI): m/z [M] calcd for C15H10N2O:
234.0793; found: 234.0783.
(5) Krasovskiy, A.; Kopp, F.; Knochel, P. Angew. Chem. Int. Ed. 2006,
45, 497.
(6) (a) Uzelac, M.; Kennedy, A. R.; Hevia, E.; Mulvey, R. E. Angew.
Chem. Int. Ed. 2016, 55, 13147. (b) Kissel, C. L.; Rickborn, B.
J. Org. Chem. 1972, 37, 2060. (c) Rathke, M. W.; Kow, R. J. Am.
Chem. Soc. 1972, 49, 6854. (d) Olofson, R. A.; Dougherty, C. M.
J. Am. Chem. Soc. 1973, 95, 581. (e) Olofson, R. A.; Dougherty, C.
M. J. Am. Chem. Soc. 1973, 95, 582.
(7) (a) Ketels, M.; Konrad, D. B.; Karaghiosoff, K.; Trauner, D.;
Knochel, P. Org. Lett. 2017, 19, 1666. (b) Becker, M. R.; Knochel,
P. Angew. Chem. Int. Ed. 2015, 54, 1. (c) Ganiek, M. A.; Becker, M.
Ethyl 2-(2,3-Dicyanobenzyl)acrylate (3c): According to the
typical procedure, injection loops A and B were loaded with
solutions of 1,2-dicyanobenzene (1a; 0.42 M containing 0.5
equiv ZnCl2, 1 mL) and TMPLi (0.63 M, 1 mL), respectively. After
injection and in situ trapping metalation the combined streams
were collected in a flask containing ethyl 2-(bromomethyl)acry-
late (89 mg, 0.46 mmol, 1.1 equiv) and CuCN·2LiCl solution
(0.04 mL, 10 mol%) dissolved in THF (1 mL) at 0 °C. The reaction
mixture was stirred for further 2 h at 0 °C before it was
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–F