B. Barlaam et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5446–5449
5449
9. (a) Hennequin, L. F.; Allen, J.; Costello, G.; Curwen, J.;
Fennell, M.; Green, T. P.; Jacobs, V.; Lambert-van der
selectivity associated with suitable physical properties
for oral dosing. Further evaluation of these compounds
for inhibiting c-Src in vivo is underway.
´
Brempt, C.; Morgentin, R.; Olivier, A.; Ple, P. A.
Structure–activity relationship and in vivo activity of a
novel series of C5-substituted anilinoquinazolines with
highly potent and selective inhibition of c-Src tyrosine
kinase activity; AACR-NCI-EORTC meeting, Boston,
Acknowledgments
´
Nov 17–21, 2003; Poster B193; (b) Hennequin L. F.; Ple,
P. A. PCT Int. Appl. (2001) WO2001094341.
We would like to acknowledge the excellent contribu-
tion of the following scientists to this work: for biology,
Vivien Jacobs, Karen Malbon, and Lindsay Millard; for
NMR, Christian Delvare; for physical chemistry, Del-
phine Dorison-Duval; for robotic synthesis, Patrice
Koza and Jacques Pelleter.
10. Bickel, A. F.; Wibaut, J. P. Recl. Trav. Chim. Pays-Bas
1946, 65, 65.
11. Representative procedure for the coupling of aminohet-
erocycles to chloroquinazolines (synthesis of 18): NaH-
MDS (5 ml, 1 M in THF, 5 mmol) was added dropwise to
an ice-cooled solution of 17 (981 mg, 2.5 mmol) and 7a
(400 mg, 2.5 mmol) in THF (13 ml). The mixture was
stirred at 0 °C for 5 min, then at rt for 3 h. After
completion of the reaction, acetic acid (5 mmol) was
added. After evaporation of the solvents, the residue was
partitioned between CH2Cl2 and water and the pH
adjusted to 7. The organic layer was extracted with
CH2Cl2 and dried over MgSO4. After evaporation of the
solvents, the residue was purified by chromatography on
silica gel (eluant: 2–5% MeOH in CH2Cl2). Evaporation of
References and notes
1. Lowe, C.; Yoneda, T.; Boyce, B. F.; Chen, H.; Mundy, G.
R.; Sonano, P. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 4485.
2. (a) Rosen, N.; Bolen, J. B.; Schwartz, A.; Cohen, P.;
DeSeau, V.; Israel, M. A. J. Biol. Chem. 1986, 261, 13754;
(b) Cartwright, C. A.; Meisler, A. I.; Eckhart, W. Proc.
Natl. Acad. Sci. U.S.A. 1990, 84, 558; (c) Talamonti, M.
S.; Roh, M. S.; Curley, S. A.; Gallick, G. E. J. Clin. Invest.
1993, 91, 3; (d) Verbeek, B. S.; Vroom, T. M.; Adriaansen-
Slot, S. S.; Ottenhoff-Kalff, A. E.; Geertzema, J. G.;
Hennipman, A.; Rijksen, G. J. Pathol. 1996, 180, 383; (e)
Lutz, M. P.; Esser, I. B.; Flossmann-Kast, B. B.; Vogel-
mann, R.; Luhrs, H.; Friess, H.; Buchler, M. W.; Adler, G.
Biochem. Biophys. Res. Commun. 1998, 243, 503; (f) Reissig,
D.; Clement, J.; Sanger, J.; Berndt, A.; Kosmehl, H.;
Bohmer, F. D. J. Cancer Res. Clin. Oncol. 2001, 127, 226.
3. Boyer, B.; Valles, A. M.; Edmen, N. Biochem. Pharmacol.
2000, 60, 1091.
4. (a) Nam, J.-S.; Ino, Y.; Sakamoto, M.; Hirohashi, S. Clin.
Cancer Res. 2002, 8, 2430; (b) Irby, R. B.; Yeatman, T. J.
Cancer Res. 2002, 62, 2669.
5. Avizienyte, E.; Wyke, A.; Jones, R. J.; McLean, G. W.;
Westhoff, M. A.; Brunton, V. G.; Frame, M. C. Nature
Cell Biol. 2002, 4, 632.
6. (a) Fincham, V. J.; Frame, M. C. EMBO J. 1998, 17, 81;
(b) Frame, M. C. Biochim. Biophys. Acta 2002, 1602, 114.
7. Allgayer, H.; Boyd, D. D.; Heiss, M. M.; Abdalla, E. K.;
Curley, S. A.; Gallick, G. E. Cancer 2002, 94, 344. For
additional references about clinical evidence linking dereg-
ulation of c-Src and increased invasive potential, see 8 and
associated references.
1
the fractions gave 18 (980 mg, 76%) as a solid: H NMR
spectrum (CDCl3) d 8.62 (s, 1H), 7.60 (d, 1H, J = 8 Hz),
7.34 (d, 1H, J = 8 Hz), 6.99 (s, 1H), 6.60 (s, 1H), 6.52 (m,
2H), 5.15 (s, 2H), 4.81 (m, 1H), 3.94 (s, 3H), 3.85 (s, 3H),
3.83 (s, 3H), 1.53 (s, 3H), 1.52 (s, 3H); MS (ES) 513, 511.
12. Tamura, Y.; Fujita, M.; Chen, L. C.; Inoue, M.; Kita, Y.
J. Org. Chem. 1981, 46, 3564.
13. The 3-aminopyridine 25a was coupled to 17 and 9 in
iPrOH at reflux in 86 and 79% yield instead of the
conditions (described in Ref. 11) used for the aminopyri-
dines 7a and 30 where the anion of the aminoheterocycle is
coupled to the chloroquinazoline. Attempts of coupling
anilines 7a and 30 with a chloroquinazoline in iPrOH at
reflux were unsuccessful, probably because of the stronger
basicity of these anilines hence protonation under these
conditions. For the synthesis of 31, we have modified
slightly the synthetic sequence: after aniline coupling
(reaction of 25a with 9) and subsequent deprotection of
the 7-acetoxy in 7 N NH3/MeOH (78% yield from 8 over 3
steps), the resulting phenol was coupled with 1-bromo-3-
chloropropane in the presence of Cs2CO3 in DMA (70%)
and the chloro was displaced with morpholine in DMA in
the presence of KI (85%).
14. Vohra, S. K.; Harrington, G. W.; Zacharias, D. E.; Swern,
D. J. Org. Chem. 1979, 44, 1128.
15. Chesterfield, J.; Mc Omie, J. F. W.; Sayer, E. R. J. Chem.
Soc. 1955, 3478.
´
8. Ple, P. A.; Green, T. P.; Hennequin, L. F.; Curwen, J.;
Fennell, M.; Allen, J.; Lambert-van der Brempt, C.;
Costello, G. J. Med. Chem. 2004, 47, 871.