´ ´
A. Jozwiak, J. Epsztajn et al.
FULL PAPER
[D6]DMSO, reference [D6]DMSO (δ ϭ 2.49 ppm)}: δ ϭ 0.82 (t,
Competitive Lithiation Tests for Mixture of Amides 14Ϫ17: The
3JH,H ϭ 7.2 Hz, 3 H, Me), 1.10Ϫ1.38 (m, 2 H, CH2), 1.40Ϫ1.64 (m, competitive lithiation tests for the mixtures of amides 14/15, 14/16
3
2 H, CH2), 2.54Ϫ2.70 (m, 2 H, PyCH2), 7.32 [d, JH,H ϭ 4.9 Hz, 1 and 14/17 were carried out as follows: nBuLi or sBuLi (15.5 mmol)
H, Py(5)-H], 7.44Ϫ7.68 [m, 3 H, Ph(3,4,5)-H], 7.89Ϫ8.06 [m, 2 H, was added to the particular equimolecular mixture of amides
3
Ph(2,6)-H], 8.36 [d, JH,H ϭ 4.8 Hz, 1 H, Py(6)-H], 8.43 [s, 1 H, (10.0 mmol) in THF (100 mL), and the general procedure was used,
Py(2)-H], 10.12 (s, 1 H, NH) ppm. 13C NMR {[D6]DMSO, refer-
ence [D6]DMSO (δ ϭ 39.5 ppm)}: δ ϭ 13.7, 21.9, 29.9, 30.6
(PyCH2), 124.1, 127.6, 128.5, 131.8, 134.0, 147.2, 147.5, 148.5,
166.1 (CO) ppm. IR ((film): ν˜max. ϭ 1651 (CO) cmϪ1. HRMS for
C16H18N2O: calcd. [M]ϩ: 254.141913, found 254.142000.
following the periods of time and the temperature of the reactions.
Acknowledgments
This work was supported by Grant in Aid for Scientific Research
´ ´
[No. 505/261 (2002)] from the University of Łodz that is grate-
fully acknowledged.
General Procedure for the Lithiation of the Amides 14؊17: nBuLi
or sBuLi (10 mmol) was added to the anilides 14Ϫ17 (5 mmol)
with or without TMEDA (10 mmol) and stirred in THF (50 mL)
at Ϫ78 °C. In the case when nBuLi was used, two procedures were
applied. The reaction mixture was kept at Ϫ78 °C for 2 h and next
was quenched with MeOD; or the solution was kept at Ϫ78 °C for
0.25 h, warmed to 0 °C, kept at 0 °C for 0.1 h and again cooled to
Ϫ78 °C before quenching with MeOD. When sBuLi was used, the
reaction mixture was kept at Ϫ78 °C for 2 h before adding MeOD.
[1]
K. J. Kapples, G. M. Shutske, J. Heterocycl. Chem. 1997, 34,
1335Ϫ1338.
[2]
R. C. Effland, J. T. Klein, L. L. Martin, G. M. Shutske, K. J.
Kapples, J. D. Tomer IV, US Patent 5,328,920, 1994; see http://
www.uspto.gov/main/patents.htm
[3]
J. D. White, M. E. Mann, Adv. Heterocycl. Chem. 1969, 10,
The
D
content was determined by 1H NMR spectroscopy
113Ϫ147.
(500 MHz, [D6]DMSO) using the following peak areas: For Amide
[4]
R. Bonnett, S. A. North, Adv. Heterocycl. Chem. 1981, 29,
4
3
14: δ ϭ 7.94 [dd, JH,H ϭ 1.2 Hz, JH,H ϭ 8.3 Hz, 2 H, Ph1(2,6)-
341Ϫ399.
H], 7.61Ϫ7.56 [m, 1 H, Ph1(4)-H] ppm. For Amide 15: δ ϭ
8.17Ϫ8.09 [m, 1 H, Py(3)-H], 8.06 [dd, JH,H ϭ 1.7 Hz, JH,H
7.7 Hz, 1 H, Py(4)-H] ppm. For Amide 16: δ ϭ 8.75 [dd, JH,H
[5]
´ ´
´
J. Epsztajn, A. Jozwiak, K. Czech, A. K. Szczesniak, Monatsh.
Chem. 1990, 121, 909Ϫ921.
4
3
ϭ
ϭ
4
[6]
[7]
[8]
[9]
´ ´
´
J. Epsztajn, A. Jozwiak, A. K. Szczesniak, Tetrahedron 1993,
3
4
1.4 Hz, JH,H ϭ 4.4 Hz, 2 H, Py(2,6)-H], 7.85 [dd, JH,H ϭ 1.4 Hz,
49, 929Ϫ938.
3JH,H ϭ 4.4 Hz, 2 H, Py(3,5)-H] ppm. For Amide 17: δ ϭ 7.83 [d,
´ ´
´
J. Epsztajn, A. Jozwiak, A. K. Szczesniak, Synthetic Commun.
1994, 24, 1789Ϫ1798.
J. Epsztajn, R. Grzelak, A. Jozwiak, Synthesis 1996,
3JH,H ϭ 7.8 Hz, 2 H, Ph1(2,6)-H], 7.15 [t, JH,H ϭ 7.5 Hz, 1 H,
3
´ ´
Ph2(4)-H] ppm. In the case of the reaction of N-phenylpyridine-2-
carboxamide (15), on increasing the temperature to 0 °C, analysis
(TLC; diisopropyl ether) showed anilide 15 (Rf ϭ 0.39) and two
additional spots (Rf ϭ 0.48, 0.57). Preparative TLC (diisopropyl
ether) resulted in three fractions. The first one (Rf ϭ 0.57) was a
1212Ϫ1216.
´ ´
J. Epsztajn, A. Jozwiak, P. Kołuda, I. Sadokierska, I. D. Wil-
kowska, Tetrahedron 2000, 56, 4837Ϫ4844.
[10]
[11]
[12]
[13]
P. Beak, V. Snieckus, Acc. Chem. Res. 1982, 10, 306Ϫ312.
N. S. Narasimhan, R. S. Mali, Synthesis 1983, 957Ϫ986.
P. Beak, A. I. Meyers, Acc. Chem. Res. 1986, 19, 356Ϫ363.
N. S. Narasimhan, R. S. Mali, Top. Curr. Chem. 1987, 138,
63Ϫ147.
1
yellow, viscous liquid (36 mg), which, according to the H and 13C
NMR spectra, appeared to be an undefined, complex mixture, and
no further attempts at its identification were undertaken. The se-
cond fraction (Rf ϭ 0.48) was a mixture of 1-(pyridin-2-yl)pentan-
1-one (18) and 6-butyl-N-phenylpyridine-2-carboxamide (19) in a
molar ratio of 2:1. Kugelrohr distillation (oil bath 190 °C, 20 Torr,
ref.[35] b.p. 60/0.4 Torr) gave the ketone 18 (65 mg, 0.4 mmol) (yield
[14]
[15]
V. Snieckus, Chem. Rev. 1990, 90, 879Ϫ933.
´
´ ´
J. Epsztajn, A. Bieniek, J. Z. Brzezinski, A. Jozwiak, Tetra-
hedron Lett. 1983, 24, 4735Ϫ4738.
J. Epsztajn, A. Bieniek, M. W. Płotka, J. Chem. Research (S)
1986, 20Ϫ21; (M), 0442Ϫ0474.
J. Epsztajn, A. Bieniek, J. A. M. W. Płotka, K. Suwald, Tetra-
hedron 1989, 45, 7469Ϫ7476.
J. Epsztajn, A. Bieniek, J. Kowalska, Tetrahedron 1991, 47,
[16]
[17]
[18]
[19]
[20]
1
8%). H NMR [200 MHz, CDCl3, reference TMS (δ ϭ 0.0 ppm)]:
δ ϭ 0.91Ϫ0.99 (m, 3 H, Me), 1.34Ϫ1.52 (m, 2 H, CH2), 1.64Ϫ1.81
(m, 2 H, CH2), 3.17Ϫ3.27 (m, 2 H, CH2), 7.42Ϫ7.51 [m, 1 H, Py(5)-
4
3
H], 7.83 [dd, JH,H ϭ 1.7 Hz, JH,H ϭ 7.7 Hz, 2 H, Py(4)-H], 8.04
1697Ϫ1706.
3
3
J. Epsztajn, A. Bieniek, J. A. Kowalska, Monatsh. Chem. 1996,
127, 701Ϫ715.
J. Epsztajn, Z. Malinowski, J. Brzezinski, M. Karzatka, Syn-
[d, JH,H ϭ 7.9 Hz, 1 H, Py(3)-H], 8.68 [d, JH,H ϭ 4.8 Hz, 1 H,
Py(6)-H] ppm. 13C NMR [CDCl3, reference TMS (δ ϭ 0.0 ppm)]:
δ ϭ 13.9, 22.4, 26.1, 37.4, 121.7, 126.9, 136.8, 148.8, 153.5, 202.1
(CO) ppm. IR (film): ν˜max. ϭ 1699 (CO) cmϪ1. The residue from
the distillation was initially purified by column chromatography
(acetone). The eluate was purified by evaporation of the solvent
and kugelrohr distillation (oil bath 180 °C, 5 Torr) to give 6-butyl-
N-phenylpyridine-2-carboxamide (19) (51 mg, 0.2 mmol, yield 4%).
1H NMR [200 MHz, CDCl3, reference TMS (δ ϭ 0.0 ppm)]: δ ϭ
0.91Ϫ0.99 (m, 3 H, Me), 1.34Ϫ1.52 (m, 2 H, CH2), 1.64Ϫ1.81 (m,
2 H, CH2), 3.17Ϫ3.27 (m, 2 H, CH2), 7.09Ϫ7.19 [m, 1 H, Ph(4)-
H], 7.28Ϫ7.44 [m, 3 H, Ph(3,5), Py(5)-H], 7.73Ϫ7.84 [m, 3 H,
´
thesis 2001, 2085Ϫ2090.
[21]
[22]
[23]
J. A. Turner, J. Org. Chem. 1983, 48, 3401Ϫ3408.
J. A. Turner, J. Org. Chem. 1990, 55, 4744Ϫ4750.
C. Metallionos, S. Nerdinger, V. Snieckus, Org. Lett. 1999, 1,
1183Ϫ1186.
C. G. Hartung, V. Snieckus, in Modern Arene Chemistry (Ed.:
D. Astruc), Wiley-VCH Verlag Gmbh and KGaA, Weinheim,
2002, pp. 330Ϫ367.
L. Pentimalli, Tetrahedron 1960, 9, 194Ϫ201.
E. H. Huntress, H. C. Walter, J. Org. Chem. 1948, 13, 735Ϫ737.
D. B. MacQueen, K. S. Schanze, J. Am. Chem. Soc. 1991,
113, 6108Ϫ6110.
A. I. Vogel, in Elementary Practical Organic Chemistry, Long-
mans, Green and Co. Ltd., London, New York, Toronto, 1959,
pp. 243Ϫ244.
[24]
[25]
[26]
[27]
3
Ph(2,6), Py(4)-H], 8.11 [d, JH,H ϭ 7.7 Hz, 1 H, Py(3)-H], 10.12
[br. s, 1 H, NH] ppm. 13C NMR [CDCl3, reference TMS (δ ϭ
0.0 ppm)]: δ ϭ 13.9, 22.4, 31.6, 37.6, 119.7, 124.2, 125.6, 129.0,
137.7, 137.8, 149.1, 161.2, 162.3 (CO) ppm. IR (film): ν˜max. ϭ 1689
(CO) cmϪ1. The third fraction (Rf ϭ 0.39) was the anilide 15
(729 mg, 4 mmol, yield 80%).
[28]
[29]
H. Brunner, B. Nuber, M. Prommesberger, J. Organomet.
Chem. 1996, 523, 179Ϫ185.
3260
2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2004, 3254Ϫ3261