SCHEME 1. Silyl Ether- and Silaketal-Based
Ring-Closing Enyne Metathesis
Efficient Synthesis of Alkynylsilyl Ethers
and Silaketals via Base-Induced
Alkynylsilane Alcoholysis
Jonathan B. Grimm and Daesung Lee*
Department of Chemistry, University of
WisconsinsMadison, Madison, Wisconsin 53706
Received June 28, 2004
Abstract: The efficient silylation of alcohols with di- and
trialkynylsilanes was achieved under base-catalyzed condi-
tions to afford alkynyl silyl ethers and symmetrical alkynyl
silaketals in good yield. A selective alcoholysis of dialkynyl
silyl ethers to mixed silaketals was also demonstrated. These
products served as substrates for enyne ring-closing me-
tathesis and, consequently, as precursors to stereochemically
defined 1,3-dienes.
SCHEME 2. Catalytic Cycle of Alkynylsilane
Alcoholysis
The silyl ether is one of the most widely used protecting
groups1 and temporary tethers2,3 in modern synthetic
chemistry due to the ease of its formation and removal
in the presence of other common protecting groups. Many
silylating agents and reaction conditions have been
developed, yet the use of reagents of the form R3Si-X (X
) Cl, OTf) and appropriate amine bases is most general.1
In our study of silicon-tethered enyne metathesis of silyl
ether 1 and silaketal 3 to the corresponding siloxanes 2
and 4 (Scheme 1), an efficient preparation of 1 and 3 was
required. Although the typical silylation procedures serve
well for the purpose of protecting hydroxyl groups with
common silylating agents, the preparation of silyl ethers
and silaketals possessing more elaborate substituents (as
in 1 and 3) requires a different silylation protocol.4
Alternative silylation reactions such as transition-metal-
catalyzed alcoholysis of hydrosilanes5 and acid-catalyzed
alcoholysis of allylsilanes6 have been developed; however,
their reaction scope has often been limited to simple,
saturated alcohol substrates.
Conceptually, a new base-catalyzed silylation method
can be developed with a silylating agent R3Si-Y where Y
is a reasonably good leaving group that retains a mod-
erately high level of basicity. We deem alkynylsilanes 5
and 6 to possess these characteristics. As shown in the
catalytic cycle (Scheme 2), the alkoxide generated by a
base initiator would react with 5 (or 6) to form the
corresponding pentacoordinated silicate adduct, which
would produce the silyl ether product by the dissociation
of an alkynyl anion from the silicon center (or, alterna-
tively, by a direct protonation of the Csp-Si bond). A
(1) (a) Protective Groups in Organic Synthesis, 3rd ed.; Greene, T.
W., Wuts, P. G. M., Eds.; John Wiley & Sons: New York, 1999. (b)
Lalonde, M.; Chan, T. H. Synthesis 1985, 817. (c) Muzart, J. Synthesis
1993, 11.
(2) Recent examples of silicon tethers in metathesis: (a) Evans, P.
A.; Murthy, V. S. J. Org. Chem. 1998, 63, 6768. (b) Hoye, T. R.; Promo,
M. A. Tetrahedron Lett. 1999, 40, 1429. (c) Zhu, S. S.; Cefalo, D. R.;
La, D. S.; Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R.
R. J. Am. Chem. Soc. 1999, 121, 8251. (d) Barrett, A. G. M.; Beall, J.
C.; Braddock, D. C.; Flack, K.; Gibson, V. C.; Salter, M. M. J. Org.
Chem. 2000, 65, 6508. (e) Yao, Q. Org. Lett. 2001, 3, 2069. (f) Harrison,
B. A.; Verdine, G. L. Org. Lett. 2001, 3, 2157. (g) Aeilts, S. L.; Cefalo,
D. R.; Bonitatebus, P. J.; Houser, J. H.; Hoveyda, A. H.; Schrock, R.
R. Angew. Chem., Int. Ed. 2001, 40, 1452. (h) Se´meril, D.; Cle´ran, M.;
Bruneau, C.; Dixneuf, P. H. Adv. Synth. Catal. 2001, 343, 184. (i)
Se´meril, D.; Cle´ran, M.; Perez, A. J.; Bruneau, C.; Dixneuf, P. H. J.
Mol. Catal. A-Chem. 2002, 190, 9. (j) Kiely, A. F.; Jernelius, J. A.;
Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 2868. (k)
Van de Weghe, P.; Aoun, D.; Boiteau, J.-G.; Eustache, J. Org. Lett.
2002, 4, 4105. (l) Denmark, S. E.; Yang, S.-M. J. Am. Chem. Soc. 2002,
124, 15196. (m) Evan, P. A.; Ciu, J.; Buffone, G. P. Angew. Chem., Int.
Ed. 2003, 42, 1734. (n) Evans, P. A.; Ciu, J.; Gharpure, S. J.;
Polosukhin, A.; Zhang, H.-R. J. Am. Chem. Soc. 2003, 125, 14702.
(3) For reviews of silicon tethers, see: (a) Bols, M.; Skrydstrup, T.
Chem. Rev. 1995, 95, 1253. (b) Fensterbank, L.; Malacria, M.; Sieburth,
S. McN. Synthesis 1997, 813. (c) Gauthier, D. R., Jr.; Zandi, K. S.; Shea,
K. J. Tetrahedron 1998, 54, 2290. Examples of silicon tethers in other
reactions: (d) Stork, G.; Chan, T. Y.; Breault, G. A. J. Am. Chem. Soc.
1992, 114, 7578. (e) Righi, P.; Marotta, E.; Landuzzi, A.; Rosini, G. J.
Am. Chem. Soc. 1996, 118, 9446. (f) Ishikawa, T.; Kudo, T.; Shigemori,
K.; Saito, S. J. Am. Chem. Soc. 2000, 122, 7633. (g) Friestad, G. K.;
Massari, S. E. Org. Lett. 2000, 2, 4237. (h) Mayasundari, A.; Young,
D. G. J. Tetrahedron Lett. 2001, 42, 203. (i) Pearson, A. J.; Kim, J. B.
Org. Lett. 2002, 4, 2837.
(4) Other protocols for the preparation of alkynylsilyl ethers: (a)
Stork, G.; Keitz, P. F. Tetrahedron Lett. 1989, 30, 6981. (b) Petit, M.;
Chouraqui, G.; Aubert, C.; Malacria, M. Org. Lett. 2003, 5, 2037.
(5) Recent examples: (a) Luo, X.-L.; Crabtree, R. H. J. Am. Chem.
Soc. 1989, 111, 2527. (b) Doyle, M. P.; High, K. G.; Bagheri, V.; Pieters,
R. J.; Lewis, P. J.; Pearson, M. M. J. Org. Chem. 1990, 55, 6082. (c)
Lorenz, C.; Schubert, U. Chem. Ber. 1995, 128, 1267. (d) Maifeld, S.
V.; Miller, R. L.; Lee, D. Tetrahedron Lett. 2002, 43, 6363. (e) Field, L.
D.; Messerle, B. A.; Rehr, M.; Soler, L. P.; Hambley, T. W. Organo-
metallics, 2003, 22, 2387. (f) Schmidt, D. R.; O’Malley, S. J.; Leighton,
J. L. J. Am. Chem. Soc. 2003, 125, 1190. (g) Miller, R. L.; Maifeld, S.
V.; Lee, D. Org. Lett. 2004, 6, 2773. Reviews: (h) Lukevics, E.;
Dzintara, M. J. Organomet. Chem. 1985, 295, 265. (i) Corey, J. Y. Adv.
Silicon Chem. 1991, 1, 327.
(6) (a) Morita, T.; Okamoto, Y.; Sakurai, H. Tetrahedron Lett. 1980,
21, 835. (b) Morita, T.; Okamoto, Y.; Sakurai, H. Synthesis 1981, 745.
(c) Hosomi, A.; Sakurai, H. Chem. Lett. 1981, 85. (d) Olah, G. A.;
Husain, A.; Gupta, B. G. B.; Salem, G. F.; Narang, S. C. J. Org. Chem.
1981, 46, 5212. (e) Shimada, T.; Aoki, K.; Shinoda, Y.; Nakamura, T.;
Tokunaga, N.; Inagaki, S.; Hayashi, T. J. Am. Chem. Soc. 2003, 125,
4688.
10.1021/jo048908l CCC: $27.50 © 2004 American Chemical Society
Published on Web 11/06/2004
J. Org. Chem. 2004, 69, 8967-8970
8967