ChemComm
Communication
propiolate derivatives and nitrosoarenes. This outcome is
distinct from the gold 1,2-oxoimination reactions of ynamides
(eqn (2)) using the same oxidant, further reflecting the diversity
of gold catalysis. Further development of this new catalytic
reaction to access 1,2-difunctionalized compounds is under
current investigation.
Scheme 1 Formation of diazene oxide.
Notes and references
1 Reviews for gold-catalyzed oxidations of alkynes, see: (a) L. Zhang,
Acc. Chem. Res., 2014, 47, 877; (b) J. Xiao and X. Li, Angew. Chem., Int.
Ed., 2011, 50, 7226.
Diazene oxide 40 represents the reducing form of nitrosobenzene
2a and its detection in the system (Table 1, entry 1) urges us to
perform additional experiments as depicted in Scheme 1. Treatment
of nitrosobenzene 2a with a gold catalyst (5 mol%) in DCE delivered
diazene oxide 40 in 3% yield, but additional water (2 equiv.)
increased the yield of species 40 to 5.5%. We believe that water
can facilitate the formation of diazene oxide 40, presumably via
N-hydroxyaniline, which is unstable in solution to form diazene
oxide 40.13 Literature has documented a fast equilibrium between
nitrosobenzene and N-hydroxyaniline in HCl/water/acetone.14
a-Imidoyl nitrone 3a is robust toward the hydration with P(t-Bu)2
(o-biphenyl)AuCl/AgNTf2 in wet DCE. Hence, formation of ester 4
from propiolate 1a in Table 1 (entry 1) is unlikely caused by the
hydration of a-imidoyl nitrone 3a. Shown in eqn (5) is the successful
hydration of species 3a with HCl (1 equiv.) in THF/water (2 : 1)
to yield a,b-dioxo ester 4 in 45% yield.
2 For wacker oxidations, epoxidations and aziridination of alkenes,
see selected reviews: (a) R. I. McDonald, G. Liu and S. S. Stahl,
Chem. Rev., 2011, 111, 2981; (b) Y. Zhu, Q. Wang, R. G. Cornwall and
Y. Shi, Chem. Rev., 2014, 114, 8199; (c) L. Degennaro, P. Trinchera
and R. Luisi, Chem. Rev., 2014, 114, 7881; (d) J. B. Sweeney,
Chem. Soc. Rev., 2002, 31, 247; (e) T. Ibuka, Chem. Soc. Rev., 1998,
27, 145.
3 For catalytic dihydroxylation and diamination reactions, see
selected reviews: (a) H. C. Kolb, M. S. VanNieuwenhze and
K. B. Sharpless, Chem. Rev., 1994, 94, 2483; (b) D. Lucet, T. L. Gall
and C. Mioskowski, Angew. Chem., Int. Ed., 1998, 37, 2580;
(c) P. N. Becker and R. G. Bergman, Organometallics, 1983, 7, 789.
4 Reviews for gold catalysis: (a) A. Fu¨rstner, Chem. Soc. Rev., 2009,
38, 3208; (b) N. T. Patil and Y. Yamamoto, Chem. Rev., 2008, 108, 3395;
(c) A. Das, S. M. A. Abu and R.-S. Liu, Org. Biomol. Chem., 2010, 8, 960;
(d) A. Arcadi, Chem. Rev., 2008, 108, 3266; (e) E. Jimenez-Nunez and
A. M. Echavarren, Chem. Rev., 2008, 108, 3326; ( f ) D. J. Gorin,
B. D. Sherry and F. D. Toste, Chem. Rev., 2008, 108, 3351;
(g) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180.
5 (a) S. Shi, T. Wang, V. Weingand, M. Rudolph and A. S. K. Hashmi,
Angew. Chem., Int. Ed., 2014, 53, 1148; (b) S. Shi, T. Wang, W. Yang,
M. Rudolph and A. S. K. Hashmi, Chem. – Eur. J., 2013, 19, 6576;
(c) C.-F. Xu, M. Xu, Y.-X. Jia and C.-Y. Li, Org. Lett., 2011, 13, 1556.
6 (a) A. Penoni, G. Palmisano, Y.-L. Zhao, K. N. Houk, J. Volkman and
K. M. Nicholas, J. Am. Chem. Soc., 2009, 131, 653; (b) S. Murru,
A. A. Gallo and R. S. Srivastava, ACS Catal., 2011, 1, 29; (c) A. Penoni
and K. M. Nicholas, Chem. Commun., 2002, 484; (d) F. Ragaini,
A. Rapetti, E. Visentin, M. Monzani, A. Caselli and S. Cenini, J. Org.
Chem., 2006, 71, 3748.
7 A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad and
R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 15372.
8 Crystallographic data of compounds 3j and 6a were deposited at
Cambridge Crystallographic Data Center with CCDC 1020243 (3j)
and CCDC 1022207 (6a).
9 For the reaction of gold-carbene with nitrosoarenes to form nitrone
species, see selected examples: (a) Z.-J. Xu, D. Zhu, X. Zeng, F. Wang,
B. Tan, Y. Hou, Y. Ly and G. Zhong, Chem. Commun., 2010, 46, 2504;
(b) N. Asao, K. Sato and Y. Yamamoto, Tetrahedron Lett., 2003,
44, 5675; (c) C. V. Ramana, P. Patel, K. Vanka, B. Miao and
A. Degterev, Eur. J. Org. Chem., 2010, 5955.
10 Nitrosoarenes can react with gold carbene to form reactive dipole
species to undergo [3+2]-cycloaddition with alkenes. See A. M.
Jadhav, S. Bhunia, H.-Y. Liao and R.-S. Liu, J. Am. Chem. Soc., 2011,
133, 1769.
(5)
Scheme 2 presents a plausible mechanism for 1,2-iminonitronation
reactions. A coordination of LAu+ with ethyl propiolate 1a induces an
attack of nitrosobenzene to give intermediate C that also possesses gold
carbene resonance C0. We postulate an initial formation of bis-nitrone
species D in accord with the result in eqn (4). The ester group
of bis-nitrone D will decrease the oxygen negative charge of the
conjugated nitrone, and the other nitrone group becomes an
active oxygen donor. We speculate that N-hydroxyaniline might
serve as a reducing species to react with bis-nitrone D to give
a-imidoyl nitrone 3a. Alternatively, bis-nitrone species D might
serve as an oxidant to oxidize propiolate 3 to give a-imidoyl
nitrone 3a, but this route is less important because the resulting
a,b-dioxo ester 4 was obtained in low yield.
In summary, we report gold-catalyzed 1,2-iminonitronation
of propiolate derivatives with nitrosoarenes, giving a-imidoyl
nitrones efficiently. This new reaction is applicable to diverse
11 Nitrosobenzene can serve as an oxygen donor to oxidize
a
gold carbene to give a carbonyl product in a catalytic process, see:
C.-H. Chen, Y.-C. Tsai and R.-S. Liu, Angew. Chem., Int. Ed., 2013,
52, 4599.
12 For a deoxygenation process in the reaction of gold carbene with
nitrones, see V. V. Pagar, A. M. Jadhav and R.-S. Liu, J. Am. Chem.
Soc., 2011, 133, 20728.
13 In our previous work,13a we reported that N-hydroxyaniline alone in
D2Cl2 under N2 will generate diazene oxide 4 in 7.5% yield whereas
unreacted N-hydroxyaniline was present as the only remaining
species. See related work (a) J.-M. Chen, C.-J. Chang, Y.-J. Ke and
R.-S. Liu, J. Org. Chem., 2014, 79, 4306; (b) Y. Wang, L. Ye and
L. Zhang, Chem. Commun., 2011, 47, 7815.
14 A small redox potential 0.5–0.6 V rationalizes an facile interconver-
sion between N-nitrosobenzene and N-hydroxyaniline. See R. E. Lutz
and M. R. Lytton, J. Org. Chem., 1937, 2, 68.
Scheme 2 A plausible reaction mechanism.
15866 | Chem. Commun., 2014, 50, 15864--15866
This journal is ©The Royal Society of Chemistry 2014