The Journal of Organic Chemistry
Article
1,3-diazabicyclo[3.1.0]hex-3-ene (6) and endo-2,6-dimethyl-4,5-di-
(10) Murthy, R. S.; Muthukrishnan, S.; Rajam, S.; Mandel, S. M.;
Ault, B. S.; Gudmundsdottir, A. D. J. Photochem. Photobiol., A 2009,
201, 157.
(11) Gamage, D. W.; Li, Q.; Ranaweera, R. A. A. U.; Sarkar, S. K.;
Weragoda, G. K.; Carr, P. L.; Gudmundsdottir, A. D. J. Org. Chem.
2013, 78, 11349.
1
phenyl-l,3-diazabicyclo-[3.1.0]hex-3-ene (7) on the basis of their H
NMR spectra, which matched those reported previously.27
1
6: H NMR (CDCl3, 400 MHz): δ 1.25 (d, J = 4 Hz, 3H), 1.48−
1.50 (d, J = 8 Hz, 3H), 2.04−2.08 (q, J = 4 Hz, 1H), 5.59−5.64 (q, J =
1
8 Hz, 1H), 7.30−7.50 (m, 10H). 7: H NMR (CDCl3, 400 MHz): δ
1.24 (d, J = 4 Hz, 3H), 1.52 (d, J = 8 Hz, 3H), 2.07 (q, J = 4 Hz, 1H),
5.0 (q, J = 8 Hz, 1H), 7.30−7.50 (m, 10H).
(12) Nunes, C. M.; Reva, I.; Pinho e Melo, T. M. V. D.; Fausto, R.;
̌
Solomek, T.; Bally, T. J. Am. Chem. Soc. 2011, 133, 18911.
Photolysis of 1b in Oxygen-Saturated Acetonitrile. Azirine 1b
(100 mg, 0.76 mmol) was dissolved in acetonitrile, and oxygen was
bubbled through the solution for 15 min. The solution was irradiated
using a high-pressure mercury lamp through a Pyrex filter (>310 nm)
for 6 h. The solvent was then removed under vacuum to yield a crude
oil. 1H NMR spectroscopy showed two products, which were
identified as 6 and 7.
(13) Rajam, S.; Murthy, R. S.; Jadhav, A. V.; Li, Q.; Keller, C.; Carra,
C.; Pace, T. C. S.; Bohne, C.; Ault, B. S.; Gudmundsdottir, A. D. J. Org.
Chem. 2011, 76, 9934.
(14) Singh, B.; Zweig, A.; Gallivan, J. B. J. Am. Chem. Soc. 1972, 94,
1199.
(15) Inui, H.; Murata, S. J. Am. Chem. Soc. 2005, 127, 2628.
(16) Murata, S.; Tomioka, H. Chem. Lett. 1992, 57.
(17) Nunes, C. M.; Reva, I.; Fausto, R. J. Org. Chem. 2013, 78, 10657.
(18) Gritsan, N. P.; Pritchina, E. S. J. Inf. Rec. Mater. 1989, 17, 391.
(19) Pritchina, E. A.; Gritsan, N. P. J. Photochem. Photobiol., A 1988,
43, 165.
(20) Barcus, R. L.; Hadel, L. M.; Johnston, L. J.; Platz, M. S.; Savino,
T. G.; Scaiano, J. C. J. Am. Chem. Soc. 1986, 108, 3928.
(21) Mueller, F.; Mattay, J. Chem. Ber. 1993, 126, 543.
(22) Orton, E.; Collins, S. T.; Pimentel, G. C. J. Phys. Chem. 1986, 90,
6139.
(23) Albrecht, E.; Mattay, J.; Steenken, S. J. Am. Chem. Soc. 1997,
119, 11605.
(24) Gakis, N.; Maerky, M.; Hansen, H. J.; Schmid, H. Helv. Chim.
Acta 1972, 55, 748.
(25) Bayes, K. D.; Toohey, D. W.; Friedl, R. R.; Sander, S. P. J.
Geophys. Res.: Atmos. 2003, 108, ACH4/1.
(26) Padwa, A.; Smolanoff, J.; Wetmore, S. I., Jr. J. Chem. Soc., Chem.
Commun. 1972, 409.
(27) Padwa, A.; Smolanoff, J.; Wetmore, S. I., Jr. J. Org. Chem. 1973,
38, 1333.
Photolysis of 1b in CO2-Saturated Acetonitrile. Azirine 1b (100
mg, 0.76 mmol) was dissolved in acetonitrile. CO2 was bubbled
through the solution while it was irradiated using a high-pressure
mercury lamp through a Pyrex filter (>310 nm) for 4 h. GC/MS was
used to monitor the reaction progress. When GC/MS showed that the
starting material was depleted, the solvent was removed under vacuum
to produce 2-methyl-4-phenyloxazol-5(2H)-one (9) in 95% yield. The
spectroscopic characterization matched the published data.28
IR (CDCl3): 2985, 1179, 1618, 1302, 1149, 1066, 928, 808, 747,
1
686 cm−1. H NMR (CDCl3, 400 MHz): δ 1.66−1.68 (d, J = 8 Hz,
3H), 6.10−6.15 (q, J = 8 Hz, 1H), 7.48−7.57 (m, 3H), 8.37−8.39 (d, J
= 8 Hz, 2H).
ASSOCIATED CONTENT
■
S
* Supporting Information
Cartesian coordinates and energies of 1a, 1b, 5, 8, and 10−16
1
and H and 13C NMR spectra of 1a, 1b, 2, 3, 4, 6, 7, and 9.
This material is available free of charge via the Internet at
(28) Padwa, A.; Akiba, M.; Cohen, L. A.; MacDonald, J. G. J. Org.
Chem. 1983, 48, 695.
AUTHOR INFORMATION
(29) Jackson, B.; Gakis, N.; Marky, M.; Hansen, H. J.; von
̈
■
Philipsborn, W.; Schmid, H. Helv. Chim. Acta 1972, 55, 916.
Corresponding Author
(30) Padwa, A.; Wetmore, S. I. J. Am. Chem. Soc. 1974, 96, 2414.
(31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (CHE-1057481)
and the Ohio Supercomputer Center for supporting this work.
REFERENCES
■
(1) Platz, M. S. Nitrenes. In Reactive Intermediate Chemistry; Moss, R.
A., Platz, M. S., Jones, M., Jr., Eds.; John Wiley & Sons: Hoboken, NJ,
2004; Chapter 11.
̈
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
(2) Reiser, A.; Leyshon, L. J. J. Am. Chem. Soc. 1971, 93, 4051.
(3) Schrock, A. K.; Schuster, G. B. J. Am. Chem. Soc. 1984, 106, 5228.
(4) Muthukrishnan, S.; Ranaweera, R. A. A. U.; Gudmundsdottir, A.
D. In Nitrenes and Nitrenium Ions; Falvey, D. E., Gudmundsdottir, A.
D., Eds.; John Wiley & Sons: Hoboken, NJ, 2013; Vol. 6.
(5) Singh, P. N. D.; Mandel, S. M.; Sankaranarayanan, J.;
Muthukrishnan, S.; Chang, M.; Robinson, R. M.; Lahti, P. M.; Ault,
B. S.; Gudmundsdottir, A. D. J. Am. Chem. Soc. 2007, 129, 16263.
(6) Sankaranarayanan, J.; Bort, L. N.; Mandel, S. M.; Chen, P.;
Krause, J. A.; Brooks, E. E.; Tsang, P.; Gudmundsdottir, A. D. Org.
Lett. 2008, 10, 937.
(7) Sankaranarayanan, J.; Rajam, S.; Hadad, C. M.; Gudmundsdottir,
A. D. J. Phys. Org. Chem. 2010, 23, 370.
(8) Lwowski, W.; Woerner, F. P. J. Am. Chem. Soc. 1965, 87, 5491.
(9) Lwowski, W.; Mattingly, T. W., Jr. J. Am. Chem. Soc. 1965, 87,
1947.
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
revision A.1; Gaussian, Inc.: Wallingford, CT, 2009.
(32) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(33) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(34) Muthukrishnan, S.; Mandel, S. M.; Hackett, J. C.; Singh, P. N.
D.; Hadad, C. M.; Krause, J. A.; Gudmundsdottir, A. D. J. Org. Chem.
2007, 72, 2757.
(35) Parasuk, V.; Cramer, C. J. Chem. Phys. Lett. 1996, 260, 7.
(36) Wenthold, P. G. J. Org. Chem. 2012, 77, 208.
(37) Hossain, E.; Wenthold, P. G. Comput. Theor. Chem. 2013, 1020,
180.
(38) Clark, W. D. K.; Steel, C. J. Am. Chem. Soc. 1971, 93, 6347.
(39) Foresman, J. B.; Frisch, Æ. Exploring Chemistry with Electronic
Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.
(40) Inui, H.; Murata, S. Chem. Lett. 2001, 30, 832.
662
dx.doi.org/10.1021/jo402443w | J. Org. Chem. 2014, 79, 653−663