C
J. Janke et al.
Letter
Synlett
O
O
Br
5a R =
5b R =
Me
OMe
69%
49%
Pd2dba3/dppf
H2N–R
N
R
Br
3b (54%)
O
OMe
Br
Me
O
5c R =
5d R =
Me
70%
62%
Pd2dba3/dppf
H2N–R
N
R
F
Br
F
nHexyl
3c (51%)
Scheme 4 Synthesis of 5a–d
Next, we turned our attention to the employment of
substituted 2,2'-dibromobenzophenones. As examples, we
chose benzophenones that contained an electron-donating
methoxy group (3b) and an electron-withdrawing fluorine
functionality (3c). The starting materials 3b,c were pre-
pared according to the conditions of the Suzuki–Miyaura
reaction mentioned above. However, isolated compounds
3b (54%) and 3c (51%) were accompanied by low amounts
of diarylated side products 6b,c, derived from arylation of
the bromine of the aryl chloride.17 Fortunately, such side
products did not affect the following cyclizations and,
hence, slightly contaminated products 3b and 3c were used
as isolated. The reaction with p-toluidine gave equally good
yields of about 70% for 5a and 5c from starting materials 3b
and 3c, respectively. However, yields decreased slightly
with an aromatic N-substituted compound 5a (69%) and 5c
(70%) to an aliphatic 5d (62%) and a benzylic N-substituted
compound 3b (49%) (Scheme 4).
In conclusion, we have developed a simple and conve-
nient synthetic pathway for the preparation of acridones by
formation of a six-membered ring by a palladium-catalyzed
Buchwald–Hartwig amination. The optimized reaction con-
ditions allow the modular synthesis of various functional-
ized acridones and tolerate a range of functional groups on
the aryl rings as well as the employment of anilines, benzyl-
ic and aliphatic amines, leading to the corresponding prod-
ucts in good to very good yields.
(4) Pal, C.; Kundu, M. K.; Bandyopadhyay, U.; Adhikari, S. Bioorg.
Med. Chem. Lett. 2011, 21, 3563.
(5) Zhao, J.; Larock, R. C. J. Org. Chem. 2007, 72, 583.
(6) Nishio, R.; Wessely, S.; Sugiura, M.; Kobayashi, S. J. Comb. Chem.
2006, 8, 459.
(7) (a) Mayur, Y. C.; Peters, G. J.; Lemos, C.; Kathmann, I.; Prasad, V.
V. S. R. Arch. Pharm. 2009, 342, 640. (b) Sathish, N. K.;
GopKumar, P.; Prasad, V. V. S. R.; Kumar, S. M. S.; Mayur, Y. C.
Med. Chem. Res. 2010, 19, 674.
(8) Singh, P.; Kaur, J.; Yadav, B.; Komath, S. S. Bioorg. Med. Chem.
2009, 17, 3973.
(9) (a) Hegde, R.; Thimmaiah, P.; Yerigeri, M. C.; Krishnegowda, G.;
Thimmaiah, G. N.; Houghton, P. J. Eur. J. Med. Chem. 2004, 39,
161. (b) Allen, C. F. H. McKee G. H. W. 1939, 19, 6.
(10) (a) Suzuki, N.; Kazui, Y.; Kato, M.; Izawa, Y. Heterocycles 1981,
16, 2121. (b) Suzuki, N.; Kazui, Y.; Tsukamoto, T.; Kato, M.;
Izawa, Y. Bull. Chem. Soc. Jpn. 1983, 1519.
(11) Zhao, J.; Larock, R. C. J. Org. Chem. 2007, 72, 583.
(12) (a) Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 11232.
(b) Pintori, D. G.; Greaney, M. F. Org. Lett. 2010, 12, 168.
(13) (a) Hoang, H. D.; Janke, J.; Amirjanyan, A.; Ghochikyan, T.;
Flader, A.; Villinger, A.; Ehlers, P.; Lochbrunner, S.; Surkus, A.-E.;
Langer, P. Org. Biomol. Chem. 2018, 16, 6543. (b) Pham, N. N.;
Janke, S.; Salman, G. A.; Dang, T. T.; Le, T. S.; Spannenberg, A.;
Ehlers, P.; Langer, P. Eur. J. Org. Chem. 2017, 5554. (c) Ohlendorf,
L.; Diaz Velandia, J. E.; Konya, K.; Ehlers, P.; Villinger, A.; Langer,
P. Adv. Synth. Catal. 2017, 359, 1758. (d) Kitawaki, T.; Hayashi,
Y.; Chida, N. Heterocycles 2005, 65, 1561. (e) Nozaki, K.;
Takahashi, K.; Nakano, K.; Hiyama, T.; Tang, H.-Z.; Fujiki, M.;
Yamaguchi, S.; Tamao, K. Angew. Chem. Int. Ed. 2003, 42, 2051.
(14) (a) Christensen, H.; Schjoth-Eskesen, C.; Jensen, M.; Sinning, S.;
Jensen, H. H. Chem. Eur. J. 2011, 17, 10618. (b) Sato, K.; Inoue, Y.;
Mori, T.; Sakaue, A.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A.
Org. Lett. 2014, 16, 3756.
Supporting Information
(15) (a) Zhang, L.; Huang, X.; Zhen, S.; Zhao, J.; Li, H.; Yuan, B.; Yang,
G. Org. Biomol. Chem. 2017, 15, 6306. (b) Zhang, X.; Yang, Y.;
Liang, Y. Tetrahedron Lett. 2012, 53, 6406.
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
(16) Typical Procedure
– Synthesis of 10-(4-Methylphenyl)-
acridin-9(10H)-one (4a)
References and Notes
A dried glass pressure tube under argon was charged with 2,2'-
dibromobenzophenone 3a (100 mg, 0.3 mmol), Pd2dba3 (14 mg,
0.015 mmol), dppf (16 mg, 0.03 mmol), KOtBu (200 mg,
1.8 mmol), and amine (0.1 ml, 0.9 mmol). The solids were dis-
solved in dry toluene (3 mL), sealed with a Teflon® cap before
being heated to 100 °C. After 24 h, the mixture was allowed to
cool to room temperature. The residue was dissolved in CH2Cl2
(20 mL), washed with hydrochloric acid (1 M, 20 mL) and dried
(1) Del Buttero, P.; Gironda, R.; Moret, M.; Papagni, A.; Parravicini,
M.; Rizzato, S.; Miozzo, L. Eur. J. Org. Chem. 2011, 2265.
(2) Huang, P.-C.; Parthasarathy, K.; Cheng, C.-H. Chem. Eur. J. 2013,
19, 460.
(3) Kobayashi, K.; Nakagawa, K.; Yuba, S.; Komatsu, T. Helv. Chim.
Acta 2013, 96, 389.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D