Journal of the American Chemical Society
Page 10 of 12
(3) For organocatalytic approaches, see: (a) Griffith, A.K.; Vanos,
Lewis acid activation through bimetallic association was postu-
lated sixty years ago as a viable avenue to generate stronger
Lewis acid catalysts. While this concept has been advanced in
the context of heterobimetallic association, the corresponding
homobimetallic association was considered to be “of little or no
synthetic consequence”.17 The results presented herein show
that the concept of Lewis acid activation by association can be
expanded to include homobimetallic interactions as a desirable
reactivity mode. We demonstrate the synthetic realization and
importance that homobimetallic association has in Lewis acid
catalysis by accessing superelectrophiles in situ to give rise to
more potent catalytic species. These proposed superelectro-
philic singly-bridged iron(III) homo-dimers lead to more reac-
tive Lewis acid-complexes that are capable of activating previ-
ously unreactive substrates for the catalytic carbonyl-olefin me-
tathesis reactions of aliphatic ketones.
C.M.; Lambert, T.H. J. Am. Chem. Soc. 2012, 134, 18581-18584. (b)
Hong, X.; Liang, Y.; Griffith, A.K.; Lambert, T.H.; Houk, K.N. Chem.
Sci. 2014, 5, 471-475.
(4) For Brønsted and Lewis acid mediated carbonyl-olefin metathesis
reactions, see: (a) Schopov, I.; Jossifov, C. Chem., Rapid Commun.
1983, 4, 659-662. (b) Soicke, A.; Slavov, N.; Neudörfl, J.-M.; Schmalz,
H.-G. Synlett 2011, 17, 2487-2490; (c) van Schaik, H.-P.; Vijn, R.-J.;
Bickelhaupt, F. Angew. Chem. Int. Ed. 1994, 33, 1611-1612. (d)
Jossifov, C.; Kalinova, R.; Demonceau, A. Chim. Oggi 2008, 26, 85-
87.
(5) (a) Ludwig, J.R.; Zimmerman, P.M.; Gianino, J.B.; Schindler, C.S.
Nature 2016, 533, 374-379. (b) McAtee, C.M.; Riehl, P.S.; Schindler,
C.S. J. Am. Chem. Soc. 2017, 139, 2960-2963. (c) Ludwig, J.R.; Phan,
S.; McAtee, C.M.; Zimmerman, P.M.; Devery III, J.J.; Schindler, C.S.
J. Am. Chem. Soc. 2017, 139, 10832-10842. (d) Groso, E.J.; Golonka,
A.N.; Harding, R.A.; Alexander, B.W.; Sodano, T.M.; Schindler, C.S.
ACS Catalysis 2018, 8, 2006-2011. (e) Albright, H., Vonesh, H.L.,
Becker, M.R., Alexander, B.W., Ludwig, J.R., Wiscons, R.A.,
Schindler, C.S. Org. Lett. 2018, 20, 4954-4958. (f) Ma, L.; Li, W.; Xi,
H.; Bai, X.; Ma, E.; Yan, X.; Li, Z. Angew. Chem. Int. Ed. 2016, 55,
10410-10413. (g) For example, a single literature report of an alumi-
num-mediated fragmentation of aliphatic oxetanes exists resulting in
30% yield of the corresponding olefin product: Jackson, A.C., Gold-
man, B.E., Snider, B.B. Intramolecular and intermolecular Lewis acid
catalyzed ene reactions using ketones as enophiles. J. Org. Chem.
1984, 49, 3988-3994. In comparison, boron trifluoride and Brønsted
acid-mediated fragmentation of oxetanes bearing aromatic moieties are
more prominent. For an example, see: Carless, H.A.J., Trivedi, H.S. J.
Chem. Soc. Chem. Comm. 1979, 8, 382-383.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. The Supporting Information is available
free of charge on the ACS Publications website at DOI:
General methods; detailed experimental studies; compu-
tational experiments; 1H and 13C NMR spectra
AUTHOR INFORMATION
Corresponding Author
* corinnas@umich.edu
(6) For a review on Lewis acid-catalyzed carbonyl-olefin metathesis
reactions, see: Ludwig, J.R.; Schindler, C.S. Synlett 2017, 28, 1501-
1509.
(7) For approaches relying on carbocation-based Lewis acids as cata-
lysts in carbonyl-olefin metathesis, see: (a) Bah, J.; Franzén, J.; Eur. J.
Org. Chem. 2015, 8, 1834-1839; (b) Tran, U.P.N.; Oss, G.; Pace, D.P.;
Ho, J.; Nguyen, T.V. Chem. Sci. 2018, 9, 5145-5151.
(8) For an approach relying on Brønsted acid-catalyzed carbonyl-olefin
metathesis reactions inside a supramolecular host, see: (a) Catti, L.;
Tiefenbacher, K. Angew. Chem. Int. Ed. 2018, 57, 14589-14592. For
an iodine-catalyzed approach, see: (b) Nguyen, T.V., Tran, U.P.N.,
Oss, G., Breugst, M., Detmar, E., Liyanto, K. ChemRxiv.
doi:10.26434/chemrxiv.7057913.
(9) Ludwig, J.R., Watson, R.B., Nasrallah, D.J., Gianino, J.B., Zim-
merman, P.M., Wiscons, R., Schindler, C.S. Science, 2018, 361, 1363-
1369.
(10) Unpublished results.
(11) Demole, E., Enggist, P., Borer, M.C. Helv. Chim. Acta. 1971, 54,
1845-1864.
(12) Baxter, R.D., Sale, D., Engle, K.M., Yu, J., Blackmond, D.G. J.
Am. Chem. Soc. 2012, 134, 4600-4606.
(13) Burés, J. Angew. Chem. Int. Ed. 2016, 55, 2028-2031.
(14) Negishi, E. Chem. Eur. J. 1999, 5, 411-420.
(15) (a) Olah, G.A. Angew. Chem. Int. Ed. 1993, 32, 767-788. (b) Olah,
G.A., Klumpp, D.A. Superelectrophiles and Their Chemistry. Wiley-
VCH Verlag GmbH & Co. KGaA 2007.
(5) Shambayati, S., Crowe, W.E., Schreiber, S.L. Angew. Chem. Int.
Ed. 1990, 29, 256-272.
(16) In comparison, the corresponding heterobimetallic association of
two different metal-derived Lewis acids have been widely investigated
to induce distinct reactivity, such as ate complexation and transmetal-
lation. For examples, see: (a) Sugasawa, T., Toyoda, T., Adachi, M.,
Sasakura, K. J. Am. Chem. Soc. 1978, 100, 4842-4852. (b) Douglas,
A.W., Abramson, N.L., Houpis, I.N., Karady, S., Molina, A., Xavier,
L.C., Yasuda, N. Tetrahedron Lett. 1994, 35, 6807-6810.
(17) Negishi, E. Pure & Appl. Chem. 1981, 53, 2333-2356.
(18) DeHaan, F.P., Brown, H.C. J. Am. Chem. Soc. 1969, 91, 4844-
4850.
ACKNOWLEDGMENT
This work was supported by the NIH/National Institute of General
Medical Sciences (R01-GM118644 to C.S.S. and R35GM128830
to P.M.Z.), the National Science Foundation (CHE-1763436 to
M.S.S), the Alfred P. Sloan Foundation and the David and Lucile
Packard Foundation (fellowships to C.S.S.). H.A., C.C.M. and
J.R.L. thank the National Science Foundation for predoctoral fel-
lowships (DGE 1256260). Computational resources were provided
by the Center for High Performance Computing at the University
of Utah and the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE), which is supported by the NSF (ACI-1548562).
We are very grateful to Prof. Nathaniel Szymczak, Prof. Adam
Matzger, Prof. Nicolai Lehnert, Andrew Hunt and Corey White
(University of Michigan) for help conducting IR, Raman and EPR
spectroscopic measurements as described in this manuscript and
accompanying supporting information. Prof. James Devery (Loy-
ola University Chicago) is gratefully acknowledged for helpful
suggestions regarding the kinetic measurements described in this
manuscript.
REFERENCES
(1) For carbonyl-olefin metathesis reactions proceeding via oxetane
photoadducts, see: (a) Jones, G., II; Schwartz, S.B.; Marton, M.T. J.
Chem. Soc., Chem. Commun. 1973, 11, 374-375. (b) Jones, G., II; Ac-
quadro, M.A.; Carmody, M.A. J. Chem. Soc., Chem. Commun. 1975,
6, 206-207. (c) Carless, H.A.J.; Trivedi, H.S. J. Chem. Soc., Chem.
Commun. 1979, 8, 382-383. (d) D’Auria, M.; Racioppi, R.; Viggiani,
L. Photochem. Photobiol. Sci. 2010, 9, 1134-1138. (e) Pérez-Ruiz, R.;
Gil, S.; Miranda, M.A. J. Org. Chem. 2005, 70, 1376-1381. (f) Pérez-
Ruiz, R.; Miranda, M.A.; Alle, R.; Meerholz, K.; Griesbeck, A.G. Pho-
tochem. Photobiol. Sci. 2006, 5, 51-55. (g) Valiulin, R.A.; Kutateladze,
A.G. Org. Lett. 2009, 11, 3886-3889. (h) Valiulin, R.A.; Arisco, T.M.;
Kutateladze, A.G. J. Org. Chem. 2011, 76, 1319-1332. (i) Valiulin,
R.A.; Arisco, T.M.; Kutateladze, A.G. J. Org. Chem. 2013, 78, 2012-
2025.
(19) Evans, D.A., Chapman, K.T., Bisaha, J. J. Am. Chem. Soc. 1988,
110, 1238-1256.
(2) Fu, G.C.; Grubbs, R.H. J. Am. Chem. Soc. 1993, 115, 3800-3801.
ACS Paragon Plus Environment