Ring Opening of Propylene Oxide
A R T I C L E S
Scheme 1. The Monometallic Mechanism Proposed for the
CHO/CO2 Copolymerization Reaction by Darensbourg
[Reproduced with Permission from Ref 54. Copyright 2002
American Chemical Society]
More recently, homogeneous systems have been developed,53-58
and, as a result of the creative and insightful independent work
of Darensbourg and Coates, a basic understanding of the cata-
lytic cycle has emerged.54-56,58-67 Studies of the related copoly-
merization of cyclohexene oxide (CHO) and CO2 have evolved
further.31,46,54,56,61,62,65,66,68-90 For CHO formation of cyclic
(31) Kuran, W.; Listos, T. Macromol. Chem. Phys. 1994, 195, 977-984.
(32) Kuran, W. Appl. Organomet. Chem. 1991, 5, 191-194.
(33) Gorecki, P.; Kuran, W. J. Polym. Sci., Polym. Lett. 1985, 23, 299-304.
(34) Inoue, S.; Takada, T.; Tatsu, H. Makromol. Chem., Rapid Commun. 1980,
1, 775-777.
(35) Soga, K.; Uenishi, K.; Ikeda, S. J. Polym. Sci., Polym. Chem. Ed. 1979,
17, 415-423.
(36) Rokicki, A.; Kuran, W. Makromol. Chem. 1979, 180, 2153-2161.
(37) Kuran, W.; Pasynkiewicz, S.; Skupinska, J. Makromol. Chem. 1977, 178,
47-54.
carbonate does not compete significantly with chain growth,
whereas in reactions involving PO and CO2 the formation of
propylene carbonate (PC) often competes with and is favored
overPPCformation,particularlyathighertemperatures.32,54,56,57,62,72,91-93
The key steps in the formation of PPC are (i) insertion of CO2
into a metal-alkoxide bond to form an alkyl carbonate group:
M-OR + CO2 f M-O2COR, and (ii) ring opening of PO
with addition of the alkyl carbonate to regenerate the metal-
alkoxide bond: M-O2COR + PO f M-OCHMeCH2OR′ or
M-OCH2CHMeOR′. Detailed mechanistic studies of reac-
tions of model compounds and the kinetics of the CHO + CO2
copolymerization reaction by the Darensbourg and Coates
groups have provided considerable insight into these reac-
tions.54-56,72,78,85 It is, however, the step involving the ring
opening of the epoxide (the oxirane), the enchainment step, that
is the least well understood. In the case of dimeric zinc
complexes, Coates has provided kinetic evidence that implicates
a bimetallic pathway,72 while in the case of salen chromium-
(III) complexes, Darensbourg has provided evidence for a
monometallic single-site pathway (Scheme 1).54
(38) Kuran, W.; Pasynkiewicz, S.; Skupinska, J.; Rokicki, A. Makromol. Chem.
1976, 177, 11-20.
(39) Kuran, W.; Pasynkiewicz, S.; Skupinska, J. Makromol. Chem. 1976, 177,
1283-1292.
(40) Kobayashi, M.; Inoue, S.; Tsuruta, T. J. Polym. Sci., Polym. Chem. Ed.
1973, 11, 2383-2385.
(41) Kobayashi, M.; Tang, Y.-L.; Tsuruta, T.; Inoue, S. Makromol. Chem. 1973,
169, 69-81.
(42) Inoue, S.; Kobayashi, M.; Koinuma, H.; Tsuruta, T. Makromol. Chem. 1972,
155, 61-73.
(43) Kobayashi, M.; Inoue, S.; Tsuruta, T. Macromolecules 1971, 4, 658-659.
(44) Kim, J. S.; Ree, M.; Lee, S. W.; Oh, W.; Baek, S.; Lee, B.; Shin, T. J.;
Kim, K. J.; Kim, B.; Luning, J. J. Catal. 2003, 218, 386-395.
(45) Ree, M.; Bae, J. Y.; Jung, J. H.; Shin, T. J. J. Polym. Sci., Part A: Polym.
Chem. 1999, 37, 1863-1876.
(46) Kuran, W.; Listos, T.; Abramczyk, M.; Dawidek, A. J. Macromol. Sci.,
Pure Appl. Chem. 1998, A35, 427-437.
(47) Tan, C.-S.; Hsu, T.-J. Macromolecules 1997, 30, 3147-3150.
(48) Kim, J.-S.; Ree, M.; Shin, T. J.; Han, O. H.; Cho, S. J.; Hwang, Y.-T.;
Bae, J. Y.; Lee, J. M.; Ryoo, R.; Kim, H. J. Catal. 2003, 218, 209-219.
(49) Ree, M.; Bae, J. Y.; Jung, J. H.; Shin, T. J. Korea Polym. J. 1999, 7, 333-
347.
(50) Liu, B.; Zhao, X.; Wang, X.; Wang, F. Polymer 2003, 44, 1803-1808.
(51) Liu, B.; Zhao, X.; Wang, X.; Wang, F. J. Polym. Sci., Part A: Polym.
Chem. 2001, 39, 2751-2754.
(52) Kim, H. S.; Kim, J. J.; Lee, S. D.; Lah, M. S.; Moon, D.; Jang, H. G.
Chem.-Eur. J. 2003, 9, 678-686.
(53) Aida, T.; Ishikawa, M.; Inoue, S. Macromolecules 1986, 19, 8-13.
(54) Darensbourg, D. J.; Yarbrough, J. C. J. Am. Chem. Soc. 2002, 124, 6335-
6342.
(55) Allen, S. D.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem.
Soc. 2002, 124, 14284-14285.
Certain catalysts, be they homogeneous or heterogeneous, are
capable of both homopolymerizing PO and copolymerizing PO/
CO2. Some, however, are selective in one over the other as
shown in Table 1. In the homopolymerization of rac-PO, these
catalysts yield highly regioregular polymers (HTHT)n with
significant stereoselectivity in the preferential formation of
(56) Darensbourg, D. J.; Yarbrough, J. C.; Ortiz, C.; Fang, C. C. J. Am. Chem.
Soc. 2003, 125, 7586-7591.
(57) Eberhardt, R.; Allmendinger, M.; Rieger, B. Macromol. Rapid Commun.
2003, 24, 194-196.
(58) Qin, Z.; Thomas, C. M.; Lee, S.; Coates, G. W. Angew. Chem., Int. Ed.
2003, 42, 5484-5487.
(59) Darensbourg, D. J.; Wildeson, J. R.; Yarbrough, J. C. Inorg. Chem. 2002,
41, 973-980.
(60) Darensbourg, D. J.; Wildeson, J. R.; Yarbrough, J. C. Organometallics 2001,
20, 4413-4417.
(77) Nozaki, K.; Nakano, K.; Hiyama, T. Polym. Mater. Sci. Eng. 2002, 87,
88.
(61) Darensbourg, D. J.; Wildeson, J. R.; Yarbrough, J. C.; Reibenspies, J. H.
J. Am. Chem. Soc. 2000, 122, 12487-12496.
(78) Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. Angew. Chem.,
Int. Ed. 2002, 41, 2599-2602.
(62) Darensbourg, D. J.; Holtcamp, M. W.; Struck, G. E.; Zimmer, M. S.;
Niezgoda, S. A.; Rainey, P.; Robertson, J. B.; Draper, J. D.; Reibenspies,
J. H. J. Am. Chem. Soc. 1999, 121, 107-116.
(79) Liu, Z.; Torrent, M.; Morokuma, K. Organometallics 2002, 21, 1056-
1071.
(63) Darensbourg, D. J.; Zimmer, M. S. Macromolecules 1999, 32, 2137-2140.
(64) Darensbourg, D. J.; Maynard, E. L.; Holtcamp, M. W.; Klausmeyer, K.
K.; Reibenspies, J. H. Inorg. Chem. 1996, 35, 2682-2684.
(65) Darensbourg, D. J.; Holtcamp, M. W.; Khandelwal, B.; Klausmeyer, K.
K.; Reibenspies, J. H. J. Am. Chem. Soc. 1995, 117, 538-539.
(66) Darensbourg, D. J.; Holtcamp, M. W. Macromolecules 1995, 28, 7577-
7579.
(80) Eberhardt, R.; Allmendinger, M.; Luinstra, G.; Rieger, B. Polym. Mater.
Sci. Eng. 2002, 87, 215-216.
(81) Nakano, K.; Nozaki, K.; Hiyama, T. Macromolecules 2001, 34, 6325-
6332.
(82) Koning, C.; Wildeson, J.; Parton, R.; Plum, B.; Steeman, P.; Darensbourg,
D. J. Polymer 2001, 42, 3995-4004.
(83) Darensbourg, D. J.; Rainey, P.; Yarbrough, J. Inorg. Chem. 2001, 40, 986-
993.
(67) Darensbourg, D. J.; Stafford, N. W.; Katsurao, T. J. Mol. Catal. A: Chem.
1995, 104, L1-L4.
(84) Darensbourg, D. J.; Adams, M. J.; Yarbrough, J. C. Inorg. Chem. 2001,
40, 6543-6544.
(68) Yu, K.; Jones, C. W. Organometallics 2003, 22, 2571-2580.
(69) Thorat, S. D.; Phillips, P. J.; Semenov, V.; Gakh, A. J. Appl. Polym. Sci.
2003, 89, 1163-1176.
(85) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky,
E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738-8749.
(86) Cheng, M.; Darling, N. A.; Lobkovsky, E. B.; Coates, G. W. Chem.
Commun. 2000, 2007-2008.
(70) Sugimoto, H.; Ohshima, H.; Inoue, S. J. Polym. Sci., Part A: Polym. Chem.
2003, 41, 3549-3555.
(71) Nakano, K.; Nozaki, K.; Hiyama, T. J. Am. Chem. Soc. 2003, 125, 5501-
5510.
(87) Nozaki, K.; Nakano, K.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 11008-
11009.
(72) Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem.
Soc. 2003, 125, 11911-11924.
(88) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. Polym. Mater. Sci. Eng. 1999,
80, 44.
(73) Jones, C. W.; Yu, K. Polym. Mater. Sci. Eng. 2003, 88, 539.
(74) Eberhardt, R.; Allmendinger, M.; Luinstra, G. A.; Rieger, B. Organome-
tallics 2003, 22, 211-214.
(89) Darensbourg, D. J.; Niezgoda, S. A.; Holtcamp, M. W.; Draper, J. D.;
Reibenspies, J. H. Inorg. Chem. 1997, 36, 2426-2432.
(90) Darensbourg, D. J. Polym. Mater. Sci. Eng. 1996, 74, 431-432.
(91) Chisholm, M. H.; Navarro-Llobet, D.; Zhou, Z. Macromolecules 2002, 35,
6494-6504.
(75) Darensbourg, D. J.; Lewis, S. J.; Rodgers, J. L.; Yarbrough, J. C. Inorg.
Chem. 2003, 42, 581-589.
(76) Darensbourg, D. J.; Adams, M. J.; Yarbrough, J. C.; Phelps, A. L. Inorg.
Chem. 2003, 42, 7809-7818.
(92) Kuran, W.; Listos, T. Macromol. Chem. Phys. 1994, 195, 1011-1015.
(93) Kuran, W.; Gorecki, P. Makromol. Chem. 1983, 184, 907-912.
9
J. AM. CHEM. SOC. VOL. 126, NO. 35, 2004 11031