electron-transport properties, while carbazole,10 coumarin,11
indoline,12 tetrahydroquinoline,13 and triphenylamine2,14
are adopted as donors because of their good electron-
donating ability as well as excellent stability.
Based on aforementioned ideas, we synthesized six novel
organic dyes with cyclic thiourea/urea functionalized tri-
phenylamine as the electron donor and 2-cyanoacrylic acid
as the acceptor. These donors and acceptor are directly
connected (AZ1 and AZ2) or bridged by oligophenylenes
(AZ3, AZ4, and AZ5) or bithiophene (AZ6). Their struc-
tures are shown in Figure 1, and the synthetic protocols
were described in detail in the Supporting Information.
For comparison, TC105 as a reference dye was synthesized
according to the literature.17
The UVꢀvis absorption spectra of the dyes in CH3CN
solution (10ꢀ5 M) are illustrated in Figure 2. Their photo-
physical and electrochemical data are collected in Table 1.
Normally, all of the dyes displayed two relatively broad
absorption bands in the ranges from 290 to 400 nm and
from 400 to 600 nm, respectively. The former absorption
Despite the significant progress was achieved by organic
sensitizers, much work is still desired to further improve
the photovoltaic performance, for example, by expanding
absorption bands and inhibiting intermolecule aggrega-
tion.15 Here, we try to introduce cyclic thiourea/urea
groups into a triphenylamine electron donor unit based
on the following considerations: (1) electron transfer from
the donor to the acceptor could be facilitated because
sulfur/oxygen and nitrogen heteroatoms in the cyclic
thiourea/urea groups tend to increase the electron-donat-
ing ability; (2) the intermolecule aggregation and undesired
charge recombination are expected to be suppressed due to
the long alkyl chains attached at the N-atom sites of cyclic
thiourea/urea groups;10a (3) cyclic thiourea/urea groups
may effectively delocalize the positive charges of the
oxidized dyes due to sulfur/oxygen and nitrogen heteroa-
toms with lone pair electrons.16
Figure 2. UVꢀvis absorption spectra of AZ1ꢀAZ6 and TC105
in CH3CN solution (10ꢀ5 M).
Table 1. Optical and Electrochemical Properties of the Dyes
Figure 1. Structures of the cyclic thiourea/urea functionalized
triphenylamine dyes AZ1ꢀAZ6 and TC105.
a
b,c
d
c
λmax
/
ε/
Eox
/
E0ꢀ0
V
/
Eox ꢀ E0ꢀ0
/
dye
AZ1
nm
M
ꢀ1 cmꢀ1
V
V
423
423
428
426
347
443
410
34 830
39 950
29 680
33 530
66 000
40 690
28 570
0.91
0.93
0.73
0.80
0.84
0.79
1.05
2.18
2.14
2.03
2.07
2.25
1.98
2.38
ꢀ1.27
ꢀ1.21
ꢀ1.30
ꢀ1.27
ꢀ1.41
ꢀ1.19
ꢀ1.33
(9) (a) Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J.-H.; Fantacci,
€
AZ2
S.; De Angelis, F.; Di Censo, D.; Nazeeruddin, M. K.; Gratzel, M.
J. Am. Chem. Soc. 2006, 128, 16701. (b) Liang, Y.; Peng, B.; Liang, J.;
Tao, Z.; Chen, J. Org. Lett. 2010, 12, 1204. (c) Do, K.; Kim, D.; Cho, N.;
Paek, S.; Song, K.; Ko, J. Org. Lett. 2012, 14, 222.
(10) (a) Koumura, N.; Wang, Z. S.; Mori, S.; Miyashita, M.; Suzuki,
E.; Hara, K. J. Am. Chem. Soc. 2006, 128, 14256. (b) Lee, W.; Cho, N.;
Kwon, J.; Ko, J.; Hong, J.-I. Chem.;Asian J. 2012, 7, 343.
(11) (a) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo,
A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B
2003, 107, 597. (b) Liu, B.; Wang, R.; Mi, W.; Li, X.; Yu, H. J. Mater.
Chem. 2012, 22, 15379.
(12) (a) Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun. 2003,
3036. (b) Wu, Y.; Zhang, X.; Li, W.; Wang, Z.-S.; Tian, H.; Zhu, W. Adv.
Energy Mater. 2012, 2, 149.
(13) Hao, Y.; Yang, X.; Cong, J.; Hagfeldt, A.; Sun, L. Tetrahedron
2012, 68, 552.
AZ3
AZ4
AZ5
AZ6
TC105
a Measured in CH3CN solution (10ꢀ5 M) at rt. b Measured in
acetonitrile solution containing 0.1 M tetrabutylam monium hexafluor-
ophosphate (TBAPF6) as electrolyte (working electrode: glassy carbon;
counter electrode: Pt (area: 0.023 cm2); reference electrode: saturated
calomel electrode (SCE)); calibrated with ferrocene/ferrocenium
(Fc/Fcþ) as an external reference and converted to NHE by addition
of 0.07 V.18 c Values are reported versus NHE. d Estimated from onset
wavelength in absorption spectra.
(14) (a) Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson,
N. A.; Ai, X.; Lian, T. Q.; Yanagida, S. Chem. Mater. 2004, 16, 1806.
(b) Thomas, K. R. J.; Hsu, Y.; Lin, J. T.; Lee, K.; Ho, K.; Lai, C.; Cheng,
Y.; Chou, P. Chem. Mater. 2008, 20, 1830. (c) Ning, Z. J.; Tian, H. Chem.
Commun. 2009, 5483.
(15) Qu, S.; Qin, C.; Islam, A.; Wu, Y.; Zhu, W.; Hua, J.; Tian, H.;
Han, L. Chem. Commun. 2012, 48, 6972.
(16) Zhang, M.-D.; Pan, H.; Ju, X.-H.; Ji, Y.-J.; Qin, L.; Zheng,
H.-G.; Zhou, X.-F. Phys. Chem. Chem. Phys. 2012, 14, 2809.
(17) Teng, C.; Yang, X. C.; Yang, C.; Tian, H. N.; Li, S. F.; Wang,
X. N.; Hagfeldt, A.; Sun, L. C. J. Phys. Chem. C 2010, 114, 11305.
B
Org. Lett., Vol. XX, No. XX, XXXX