ChemComm
Page 4 of 4
COMMUNICATION
DOI: 10.1039/C6CC09794D
An additional mechanistic concern is the reactivity
difference between aliphatic and aryl-substituted terminal
alkynes. As shown in Figure 2B, treating either alkyne 1a
(Figure 2C) or ketone 1a’ (Figure 2D) with an equimolar ratio of
aliphatic and aromatic alkyne afforded alkyne 6b as the major
product, with no aliphatic oxepine or alkynylation observed.
This data suggests that gold-acetylides formed from either
aliphatic or aryl-substituted terminal alkynes exhibit divergent
reactivity within the catalytic system based on alkyne
substitution. Therefore, the intramolecular cyclization of
homo-propargyl alcohol 1a efficiently out-competes the
intermolecular hydroxylation of the terminal alkyne,
selectively forming the alkynylation product 6b.
Chem. Commun., 2013, 49, 1282; (e) R. Meiss, K. Kumar, and H.
Waldmann, Chem. Eur. J., 2015, 21, 13526; (f) J. Miró, M. Sánchez-
Roselló, J. González, C. del Pozo and S. Fustero, Chem. Eur. J., 2015,
21, 5459; (g) W. D. Rao, M. J. Koh, P. Kothandaraman and P. W. H.
Chan, J. Am. Chem. Soc., 2012, 134, 10811; (h) P. B. Brady, E. M.
Carreira, Org. Lett., 2015, 17, 3350.
3
4
.
.
Y. Wei and M. Shi, ACS Catal., 2016, 6, 2515.
(a) S. E. Motika, Q. Wang, N. G. Akhmedov, L. Wojtas and X. Shi,
Angew. Chem., Int. Ed., 2016, 55, 11582; (b) Y. Yang, A. Qin, K. Zhao,
D. Wang and X. Shi, Adv. Synth. Catal., 2016, 358, 1433. (c) Q. Wang,
S. E. Motika, N. G. Akhmedov, J. L. Petersen and X. Shi, Angew.
This result contrasts with our previously reported system in Chem., Int. Ed., 2014, 53, 5418; (d) H. Duan, S. Sengupta, J. L.
which intermolecular hydroalkoxylation was preferred.
Furthermore, by utilizing the N-heterocyclic carbene gold
catalyst IPrAuNTf2, 13 the internal alkyne functionality of
Petersen, N. G. Akhmedov and X. Shi, J. Am. Chem. Soc., 2009, 131,
12100.
5 (a) S. Hosseyni, L. Wojtas, M. Li and X. Shi, J. Am. Chem. Soc.,
.
compound
6 can be activated to form oxepine 3 through a
2016, 138, 3994; (b) V. Snieckus and L. C. Frota, Synfacts, 2016, 12,
ring-expansion rearrangement (a detailed mechanistic study is
currently under investigation). Consequently, aryl-substituted
terminal alkynes are successfully implemented into a highly
efficient gold-catalyzed synthesis of 2,3-dihydrooxepines for
the first time.
573.
6
.
S. Hosseyni, C. A. Smith and X. Shi, Org. Lett., 2016, ASAP.
7
.
(a) W. Wang, G. B. Hammond and B. Xu, J. Am. Chem. Soc., 2012,
134, 5697; (b) D. J. Gorin and F. D. Toste, Nature, 2007, 446, 395.
8. For selected examples of metal-catalyzed oxonium alkynylation,
Herein, we report the gold-catalyzed intermolecular
condensation of alkynols and aromatic terminal alkynes. It
was discovered that the initial alkynylated substrates undergo
a subsequent gold-catalyzed ring expansion to afford the
corresponding 2,3-dihydrooxepines. This reaction represents a
complementary synthesis to our previously reported enyne
cycloisomerization. Additionally, the transformation is an
illustration of reaction divergence that is tuned by altering the
structure of the substrate. As a result of the mild reaction
conditions, expedient functional group modification, and
mechanistic insight gained, this study holds significant value in
the advancement of gold-catalysis for the synthesis of complex
molecules.
see: (a) X-Q. Yao and C-J. Li, Org. Lett., 2006, 8, 1953; (b) C.
Obradors and A. M. Echavarren, Chem. Eur. J., 2013, 19, 3547; (c) M.
Michalska, O. Songis, C. Taillier, S. P. Bew and V. Dalla, Adv. Synth.
Catal., 2014, 356, 2040; (d) H. Ueda, M. Yamaguchi, H. Kameya, K.
Sugimoto and H. Tokuyama, Org. Lett., 2014, 16, 4948; (e) H. Ueda,
M. Yamaguchi and H. Tokuyama, Chem. Pharm. Bull., 2016, 64, 824.
9. For selected examples of metal-catalyzed iminium alkynylation,
see: (a) C. Koradin, K. Polborn and P. Knochel, Angew. Chem., Int.
Ed., 2002, 41, 2535; (b) T. F. Knöpfel, P. Zarotti, T. Ichikawa and E. M.
Carreira, J. Am. Chem. Soc., 2005, 127, 9682. (c) J. Han, B. Xu and G.
B. Hammond, J. Am. Chem. Soc., 2010, 132, 916.
10. (a) J. Yan, G. L. Tay, C. Neo, B. R. Lee and P. W. H. Chan, Org.
Lett., 2015, 17, 4176; (b) N. V. Borrero, L. G. DeRatt, L. F. Barbosa, K.
A. Abboud and A. Aponick, Org. Lett., 2015, 17, 1754; (c) A. Z.
Gonzalez and D. F. Toste, Org. Lett., 2010, 12, 200.
We thank the NIH (1R01GM120240-01), NSF (CHE-1362057)
and NSFC (21629201) for financial support. CAS thanks NSF (HRD-
1400837) for financial support.
11. T. X. M. Nguyen, B. Son-Meniel, J-C. Jullian and B. Figadere. Lett.
Org. Chem., 6, 630.
12. For recent examples of gold-catalyzed ring expansions, see: (a)
Notes and references
L-L. Zhu, X-X. Li, W. Zhou, X. Li and Z. Chen, J. Org. Chem., 2011, 76,
8814; (b) B. Bolte and F. Gagosz, J. Am. Chem. Soc., 2011, 133, 7696;
(c) K-D. Kim, H-S. Yeom, S. Shin, and S. Shin, Tetrahedron, 2012, 68,
5241; (d) W. Yuan, X. Dong, Y. Wei and M. Shi, Chem. Eur. J., 2012,
18, 10501; (e) J-H. An, H. Yun, S. Shin and S. Shin, Adv. Synth. Catal.,
2014, 356, 3749; (f) J. Zhao, J. Liu, X. Xie, S. Li and Y. Liu, Org. Lett.,
2015, 17, 5926; (g) M. Chen, N. Sun, W. Xu, J. Zhao, G. Wang and Y.
Liu, Chem. Eur. J., 2015, 21, 18571.
1 For a collection of recent reviews, see: (a) S. Pflasterer and A. S.
.
K. Hashmi, Chem. Soc. Rev., 2016, 45, 1331−1367; (b) R. Dorel and A.
M. Echavarren, Chem. Rev., 2015, 115, 9028; (c) M. Rudolph and A.
S. K. Hashmi, Chem. Soc. Rev., 2012, 41, 2448; (d) N. Krause and C.
Winter, Chem. Rev., 2011, 111, 1994; (e) A. Fürstner, Chem. Soc.
Rev., 2009, 38, 3208.
2. (a) G-Q. Chen, W. Fang, Y. Wei, X-Y. Tang and M. Shi, Chem. Sci.,
13
.
S. Díez-González, N. Marion and S. P. Nolan, Chem. Rev., 2009,
2016, 7, 4318; (b) W. Fang, X-Y. Tang and M. Shi, RSC Adv., 2016, 6,
4047; (c) E. Tomás-Mendivil, P. Y. Toullec, J. Díez, S. Conejero, V.
Michelet and V. Cadierno, Org. Lett., 2012, 14, 2520; (d) B. Alcaide,
P. Almendros, S. Cembellín, T. M. del Campo and I. Fernández,
109, 3612.
4 | J. Name., 20xx, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx