ACS Catalysis
Page 6 of 8
[20]
Allen, C. L.; Williams, J. M. MetalꢀCatalysed Approaches to Amide
Bond Formation. Chem. Soc. Rev. 2011, 40, 3405−3415.
Tillack, A.; Rudloff, I.; Beller, M. Catalytic Amination of Aldehydes to
Amides. Eur. J. Org. Chem. 2001, 2001, 523−528.
Fang, X.; Li, H.; Jackstell, R.; Beller, M. Selective Palladiumꢀ
Catalyzed Aminocarbonylation of 1, 3ꢀDienes: AtomꢀEfficient Syntheꢀ
sis of β,γꢀUnsaturated Amides. J. Am. Chem. Soc. 2014, 136,
16039−16043.
Wu, X.ꢀF.; Bheeter, C. B.; Neumann, H.; Dixneuf, P. H.; Beller, M.
Lewis AcidꢀCatalyzed Oxidation of Benzylamines to Benꢀ
zamides. Chem. Commun. 2012, 48, 12237−12239.
Srogl, J.; Voltrova, S. Copper/Ascorbic Acid Dyad as a Catalytic
System for Selective Aerobic Oxidation of Amines. Org. Lett. 2009, 11,
843−845.
Azizi, N.; Gholibeglo, E. A Highly Efficient Synthesis of Dithiocarbaꢀ
mates in Green Reaction Media. RSC Adv. 2012, 2, 7413−7416.
Legacy, C. J.; Wang, A.; O'Day, B. J.; Emmert, M. H. Iron‐Catalyzed
CαꢀH Oxidation of Tertiary, Aliphatic Amines to Amides under Mild
Conditions. Angew. Chem. Int. Ed. 2015, 54, 14907−14910.
Moriarty, R. M.; Vaid, R. K.; Duncan, M. P.; Ochiai, M.; Inenaga, M.;
Nagao, Y. Hypervalent Iodine Oxidation of Amines Using Iodosobenꢀ
zene: Synthesis of Nitriles, Ketones and Lactams. Tetrahedron Lett.
1988, 29, 6913−6916.
Tanaka, K.; Yoshifuji, S.; Nitta, Y. A New Method for the Synthesis of
Amides from Amines: Ruthenium Tetroxide Oxidation of NꢀProtected
Alkylamines. Chem. Pharm. Bull. 1988, 36, 3125−3129.
Wu, X.ꢀF.; Bheeter, C. B.; Neumann, H.; Dixneuf, P. H.; Beller, M.;
Lewis AcidꢀCatalyzed Oxidation of Benzylamines to Benꢀ
zamides. Chem. Commun. 2012, 48, 12237−12239.
We are thankful to Prof. Dr. Lutz Ackermann for his supꢀ
port.
1
2
3
4
5
6
7
8
[21]
[22]
REFERENCES
[1]
Sood, A.; Panchagnula, R. Peroral Route: An Opportunity for Protein
and Peptide Drug Delivery. Chem. Rev. 2001, 101, 3275−3304.
Leeson, P. D.; Springthorpe, B. The Influence of DrugꢀLike Concepts
on DecisionꢀMaking in Medicinal Chemistry. Nat. Rev. Drug Discovery
2007, 6, 881−890.
[2]
[23]
[24]
[3]
[4]
Castral, T. C.; Matos, A. P.; Monteiro, J. L.; Araujo, F. M.; Bondancia,
T. M.; BatistaꢀPereira, L. G.; Corrêa, A. G. Synthesis of a Combinatoꢀ
rial Library of Amides and Its Evaluation against the Fall Armyworm,
Spodoptera frugiperda. J. Agric. Food Chem. 2011, 59, 4822−4827.
Claassen, G.; Brin, E.; CroganꢀGrundy, C.; Vaillancourt, M. T.; Zhang,
H.ꢀZ.; Cai, S.ꢀX.; Drewe, J.; Tseng, B.; Kasibhatla, S. Selective Activaꢀ
tion of Apoptosis by a Novel Set of 4ꢀarylꢀ3ꢀ(3ꢀarylꢀ1ꢀoxoꢀ2ꢀpropenyl)ꢀ
2 (1H)ꢀquinolinones through a MycꢀDependent Pathway. Cancer Lett.
2009, 274, 243−249.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[25]
[26]
[5]
[6]
Barbe, G.; Charette, A. B. Highly Chemoselective Metalꢀfree Reducꢀ
tion of Tertiary Amides. J. Am. Chem. Soc. 2008, 130, 18−19.
Forbis, R. M.; Rinehart, K. L. Nybomycin. VII. Preparative Routes to
Nybomycin and Deoxynybomycin. J. Am. Chem. Soc. 1973, 95,
5003−5013.
[27]
[28]
[29]
[7]
Meng, Z.ꢀJ.; Wu, N.; Liu, Y.; Shu, K.ꢀJ.; Zou, X.; Zhang, R.ꢀX. Deng,
Z.ꢀL. Evodiamine Inhibits the Proliferation of Human Osteosarcoma
Cells by Blocking PI3K/Akt Signaling. Oncol. Rep. 2015, 34,
1388−1396.
[8]
Wang, S.; Fang, K.; Dong, G.; Chen, S.; Liu, N.; Miao, Z.; Sheng, C.;
Scaffold Diversity Inspired by the Natural Product Evodiamine: Disꢀ
covery of Highly Potent and Multitargeting Antitumor Agents. J. Med.
Chem. 2015, 58, 6678−6696.
[30] Feng, J.ꢀB.; Neumann, H.; PewsꢀDavtyan, A.; Langer, P.; Beller, M. A
General and Practical Oxidation of Alcohols to Primary Amides under
MetalꢀFree Conditions. Green Chem. 2013, 15, 1956.
[9]
Stewart, A. K.; Rajkumar, S. V.; Dimopoulos, M. A.; Masszi, T.;
Špička, I.; Oriol, A.; GoranovaꢀMarinova, V. Carfilzomib, Lenalidomide,
and Dexamethasone for Relapsed Multiple Myeloma. New Engl. J.
Med. 2015, 372, 142−152.
Krönke, J.; Udeshi, N. D.; Narla, A.; Grauman, P.; Hurst, S. N.;
McConkey, M.; Ciarlo, C. Lenalidomide Causes Selective Degradation
of IKZF1 and IKZF3 in Multiple Myeloma Cells. Science, 2014, 343,
301−305.
Panahi, Y.; Hosseini, M. S.; Khalili, N.; Naimi, E.; Majeed, M.; Sahebꢀ
kar, A. Antioxidant and Antiꢀinflammatory Effects of Curcuminoidꢀ
Piperine Combination in Subjects with Metabolic Syndrome: A Ranꢀ
domized Controlled Trial and an Updated Metaꢀanalysis. Clin. Nutr.
2015, 34, 1101−1108.
[31]
Zhu, Y.ꢀP.; Sergeyev, S.; Franck, P.; Orru, R. V.; Maes, B. U.; Amine
Activation: Synthesis of Nꢀ(Hetero) Arylamides from Isothioureas and
Carboxylic Acids. Org. Lett. 2016, 18, 4602−4605.
Kim, J. W.; Yamaguchi, K.; Mizuno, N. Heterogeneously Catalyzed
Efficient Oxygenation of Primary Amines to Amides by a Supported
Ruthenium Hydroxide Catalyst. Angew. Chem. Int. Ed. 2008, 47,
9249−9251.
Ray, R.; Hazari, A. S.; Chandra, S.; Maiti, D.; Lahiri, G. K. Highly
Selective Ruthenium‐Catalyzed Direct Oxygenation of Amines to Amꢀ
ides. Chem. Eur. J. 2017, 24, 1067−1071.
Jin, X.; Kataoka, K.; Yatabe, T.; Yamaguchi, K.; Mizuno, N. Supportꢀ
ed Gold Nanoparticles for Efficient αꢀOxygenation of Secondary and
Tertiary Amines into Amides. Angew. Chem. Int. Ed. 2016, 55,
7212−7217.
Khusnutdinova, J. R.; BenꢀDavid, Y.; Milstein, D. OxidantꢀFree Conꢀ
version of Cyclic Amines to Lactams and H2 Using Water as the Oxyꢀ
gen Atom Source. J. Am. Chem. Soc. 2014, 136, 2998−3001.
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Visible Light Photoredox
Catalysis with Transition Metal Complexes: Applications in Organic
Synthesis. Chem. Rev. 2013, 113, 5322−5363.
[32]
[10]
[11]
[33]
[34]
[12]
Langston, J. W.; Irwin, I.; Langston, E. B.; Forno, L. S. Pargyline
Prevents MPTPꢀInduced Parkinsonism in Primates. Science, 1984,
225, 1480.
Smith, M. B.; March, J. Marchs’ Advanced Organic Chemistry, 5th ed.,
Wiley, New York, 2001.
[35]
[36]
[37]
[13]
[14]
[15]
Li, Y.; Jia, F.; Li, Z. Iron‐catalyzed Oxidative Amidation of Tertiary
Amines with Aldehydes. Chem. Eur. J. 2013, 19, 82−86.
Zhu, M.; Fujita, K. I.; Yamaguchi, R. Aerobic Oxidative Amidation of
Aromatic and Cinnamic aldehydes with Secondary Amines by CuI/2ꢀ
Pyridonate Catalytic System. J. Org. Chem. 2012, 77, 9102−9109.
Bai, C.; Yao, X.; Li, Y. Easy Access to Amides through Aldehydic C–
H Bond Functionalization Catalyzed by Heterogeneous CoꢀBased
Catalysts. ACS Catal. 2015, 5, 884−891.
Yoo, W. J.; Li, C.ꢀJ. Highly Efficient Oxidative Amidation of Aldehydes
with Amine Hydrochloride Salts. J. Am. Chem. Soc. 2006, 128,
13064−13065.
Seo, S. Y.; Marks, T. J. Mild Amidation of Aldehydes with Amines
Mediated by Lanthanide Catalysts. Org. Lett. 2008, 10, 317−319.
Li, J. Xu, F.; Zhang, Y.; Shen, Q. Heterobimetallic Lanthaꢀ
nide/Sodium Phenoxides: Efficient Catalysts for Amidation of Aldeꢀ
hydes with Amines. J. Org. Chem. 2009, 74, 2575−2577.
Yoo, W. J.; Kobayashi, S. Efficient Visible Lightꢀmediated Crossꢀ
Dehydrogenative Coupling Reactions of Tertiary Amines Catalyzed by
a
PolymerꢀImmobilized Iridiumꢀbased Photocatalyst. Green Chem.
[16]
[17]
2014, 16, 2438−2442.
[38]
[39]
Sato, S.; Morikawa, T.; Kajino, T.; Ishitani, O. A highly Efficient Monꢀ
onuclear Iridium Complex Photocatalyst for CO2 Reduction under Visꢀ
ible Light. Angew. Chem. Int. Ed. 2013, 125, 1022−1026.
Mishra, A.; Fischer, M. K. R.; Bauerele, P. Metal‐Free Organic Dyes
for Dye‐Sensitized Solar Cells: From Structure: Property Relationships
to Design Rules. Angew. Chem. Int. Ed. 2009, 48, 2474−2499.
[18]
[19]
[40] Selopal, G. S.; Wu, H.ꢀP.; Lu, J.; Chang, Y.ꢀC.; Wang, M.ꢀK.; Vomiero,
A.; Concina, I.; Diau, E. W. G. MetalꢀFree Organic Dyes for TiO2 and
ZnO DyeꢀSensitized Solar Cells. Sci. Rep. 2016, 6, 18756.
[41]
Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Visible Light Photoreꢀ
dox Catalysis: Generation and Addition of NꢀAryl tetrahydroisoquinoꢀ
6
ACS Paragon Plus Environment