Y. Li et al. / Applied Catalysis A: General 384 (2010) 171–176
175
119.28, 118.85, 105.25, 29.74, 20.77; 19F NMR (376.5 MHz, CD2Cl2,
25 ◦C, ı (ppm)): −75.55 (s); 27Al NMR (104.3 MHz, PhCN, 25 ◦C, ı
(ppm)): 56.3. Selected IR (Nujol, cm−1): ꢀ (CN) 2728, 2287, 2239,
2008, 1973, 1903, 1811, 1765.
dichloromethane (6 mL). The reaction began with the addition of
cyclohexene oxide (5 mmol, 0.505 mL). The course of the reaction
was monitored by quantitative GC analysis. Samples were taken
(7.2 L) in regular intervals (10, 30, 50 and 90 min), diluted with
1 mL acetonitrile, and treated with one drop of water to quench
the reaction. The resulting solution was injected into a GC column.
The product was identified by comparing its retention time with
that of authorized sample. The yield at each sampling time was
calculated from calibration curve recorded prior to the reaction
course.
4.2. General procedure for the synthesis of 2 and 4
To an acetonitrile (1 mL)/dichloromethane (2 mL) solution of
HOC(CF3)2R, R = Ph, PhCH3 (3 mmol), a heptane solution of Al(CH3)3
(1.1 mmol, 1.1 mL) was added dropwise at 0 ◦C within 30 min. The
reaction solution was kept stirring for 1 h at 0 ◦C and another 24 h
at room temperature. The product was obtained by removing the
volatiles in vacuo (1 × 10−3 mbar).
Acknowledgements
MeCNAl(OC(CF3)2PhCH3)3 2: HOC(CF3)2PhCH3 (3 mmol,
0.62 mL), 1 M solution of AlMe3 in n-heptane (1.1 mmol, 1.1 mL);
yield: (80%). Elemental Anal. Calc. (%) for C32H24AlF18NO3 (839.49):
C 45.78; H 2.88; F 40.74; N 1.67. Found: C 44.41; H 2.71; F 40.38;
N 1.62; 1H NMR (400 MHz, CD2Cl2, 25 ◦C, ı (ppm)): 7.56 (d, 6H),
7.17 (d, 6H), 2.49 (s, 3H), 2.35 (s, 9H); 13C NMR (101 MHz, CD2Cl2,
25 ◦C, ı (ppm)): 139.64, 130.11, 128.87, 125.03, 122.15, 119.28,
126.61, 124.97, 122.09, 20.78, 1.96; 19F NMR (376.5 MHz, CD2Cl2,
25 ◦C, ı (ppm)): −75.33 (s); 27Al NMR (104.3 MHz, MeCN, 25 ◦C, ı
(ppm)): 44.2. Selected IR (Nujol, cm−1): ꢀ (CN) 2726, 2315, 1919,
1813, 1653, 1615.
MeCNAl(OC(CF3)2Ph)3 4: HOC(CF3)2Ph (3 mmol, 0.505 mL), 1 M
solution of AlMe3 in n-heptane (1.1 mmol, 1.1 mL); yield: (87%). Ele-
mental Anal. Calc. (%) for C29H18AlF18NO3 (797.41): C 43.68; H 2.28;
F 42.89; N 1.76. Found: C 43.41; H 2.51; F 42.39; N 1.62; 1H NMR
(400 MHz, CD2Cl2, 25 ◦C, ı (ppm)): 7.72–7.48 (m, 12H,) 7.25 (s, 3H),
2.49 (s, 3H); 13C NMR (101 MHz, CD2Cl2, 25 ◦C, ı (ppm)): 139.53,
129.97, 128.77, 125.03, 122.15, 126.23, 124.76, 121.46, 29.85, 20.64,
2.97; 19F NMR (376.5 MHz, CD2Cl2, 25 ◦C, ı (ppm)): −75,32 (s); 27Al
NMR (104.3 MHz, MeCN, 25 ◦C, ı (ppm)): 42.6. Selected IR (Nujol,
cm−1): ꢀ(CN) 2725, 2392, 2292, 2241, 2007, 1931, 1915, 1821, 1765.
Y.L. is grateful to the University Bavaria e.V. for a Ph.D. grant.
Dr. Zhenggang Lan is acknowledged for useful discussions. The
International Graduate School of Science and Engineering (IGSSE)
is acknowledged for financial support.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] (a) K.B. Lindsay, S.G. Pyne, Tetrahedron 60 (2004) 4173;
(b) E. Ruediger, A. Martel, N. Meanwell, C. Solomon, B. Turmel, Tetrahedron
Lett. 45 (2004) 739.
[2] (a) P. O’Brien, Angew. Chem. Int. Ed. 38 (1999) 326;
(b) G.G. Li, H.T. Chang, K.B. Sharpless, Angew. Chem. Int. Ed. 35 (1996) 451.
[3] D.J. Ager, I. Prakash, D.R. Schaad, Chem. Rev. 96 (1996) 835.
[4] (a) L.E. Overman, L.A. Flippin, Tetrahedron Lett. 22 (1981) 196;
(b) M.C. Carre, J.P. Houmounou, P. Caubere, Tetrahedron Lett. 26 (1985) 3107;
(c) Y. Yamamoto, N. Asao, M. Meguro, N. Tsukade, H. Nemoto, N. Adayari, J.G.
Wilson, H. Nakamura, J. Chem. Soc., Chem. Commun. (1993) 1201;
(d) J. Cossy, V. Bellosta, C. Hamoir, J.-R. Desmurs, Tetrahedron Lett. 43 (2002)
7083.
[5] (a) S. Sagava, H. Abe, Y. Hase, T. Inaba, J. Org. Chem. 64 (1999) 4962;
(b) S. Rampalli, S.S. Chaudhari, K.G. Akamanchi, Synthesis (2000) 78.
[6] M. Curini, F. Epifano, M.C. Marcotullio, O. Rosati, Eur. J. Org. Chem. (2001) 4149.
[7] (a) M. Chini, P. Crotti, F. Macchia, Tetrahedron Lett. 31 (1990) 4661;
(b) J. Iqbal, A. Pandey, Tetrahedron Lett. 31 (1990) 575;
4.3. Single crystal X-ray structure determination
Compound 2: colorless plate, C32H24AlF18NO3, Mr = 839.50;
orthorhombic, space group Pbca (Nr. 61), a = 17.4940(3),
(c) C. Bonini, G. Righi, Synthesis (1994) 225;
(d) B.L. Chng, A. Ganesan, Bioorg. Med. Chem. Lett. 7 (1997) 1511;
(e) X.L. Fu, S.H. Wu, Synth. Commun. 27 (1997) 1677;
b = 13.7218(2),
ꢁ(MoK␣) = 0.71073 Å,
T = 173(1) K,
c = 29.6752(5) Å,
V = 7123.5(2) Å3,
,
Z = 8,
ꢂ = 0.186 mm−1
ꢃcalc. = 1.566 g cm−3
,
(f) S. Chandrasekhar, T. Ramachandar, S.J. Prakash, Synthesis (2000) 1817;
(g) L.R. Reddy, M.A. Reddy, N. Bhanumathi, K.R. Rao, Synthesis (2001) 831.
[8] (a) J. Auge, F. Leroy, Tetrahedron Lett. 37 (1996) 7715;
(b) D. Brandley, G. Williams, M. Lawton, Org. Biomol. Chem. 3 (2005) 3269;
(c) B. Shivani, A.K. Pujala, Chakraborti, J. Org. Chem. 72 (2007) 3713;
(d) M. Fujiwara, M. Imada, A. Baba, H. Matsuda, Tetrahedron Lett. 30 (1989)
F(0 0 0) = 3376,
0.10 mm × 0.33 mm × 0.36 mm,
ꢄmax
:
25.34◦, R1 = 0.0323 {5741 observed data [Io > 2ꢅ(Io)]},
wR2 = 0.0908 (all 6518 data), GOF = 1.069, 500 parameters,
ꢆꢃmax/min = 0.25/−0.21 e Å−3
. Crystallographic data (excluding
structure factors) for the structure of complex 2 have been
data can be obtained free of charge on application to CCDC, 12
Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336 033;
Information.
(e) G. Sekar, V.K. Singh, J. Org. Chem. 64 (1999) 287.
[9] (a) G.H. Posner, D.Z. Rogers, J. Am. Chem. Soc. 99 (1977) 8208;
(b) M. Onaka, M. Kawai, Y. Izumi, Chem. Lett. (1985) 779;
(c) J. Yamada, M. Yumoto, Y. Yamamoto, Tetrahedron Lett. 30 (1989) 4255.
[10] G. Erker, Dalton Trans. (2005) 1883.
[11] (a) M. Bochmann, J. Chem. Soc., Dalton Trans. (1996) 255;
(b) E.Y.-X. Chen, T.J. Marks, Chem. Rev. 100 (2000) 1391;
(c) M.C. Baird, Chem. Rev. 100 (2000) 1471.
[12] S. Chandrasekhar, C.R. Reddy, B.N. Babu, G. Chandrashekar, Tetrahedron Lett.
43 (2002) 3801.
4.4. General procedure for epoxides ring opening by amines
[13] I.D.G. Watson, A.K. Yudin, J. Org. Chem. 68 (2003) 5160.
[14] (a) G.C. Welch, R.R.S. Juan, J.D. Masuda, D.W. Stephan, Science 314 (2006) 1124;
(b) P.A. Chase, D.W. Stephan, Angew. Chem. Int. Ed. 47 (2008) 7433;
(c) D. Holschumacher, T. Bannenberg, C.G. Hrib, P.G. Jones, M. Tamm, Angew.
Chem. Int. Ed. 47 (2008) 7428;
The epoxide (5 mmol) was added to a mixture of amine (5 mmol)
and catalyst (1 mol%). The mixture was stirred for 4 h at room tem-
perature. Then resulting mixture was diluted with Et2O (15 mL),
washed with water (5 mL), dried over Na2SO4, and concentrated in
vacuo to afford the respective 2-amino alcohol.
(d) T.A. Rokob, A. Hamza, A. Stirling, T. Soos, I. Papai, Angew. Chem. Int. Ed. 47
(2008) 2435;
(e) V. Sumerin, F. Schulz, M. Nieger, M. Leskela, T. Repo, B. Rieger, Angew. Chem.
Int. Ed. 47 (2008) 6001.
[15] M.J. Collins, G.J. Schrobilgen, Inorg. Chem. 24 (1985) 2608.
[16] F. Sladky, H. Kropshof, O. Leitzke, J. Chem. Soc., Chem. Commun. (1973) 134.
[17] V.C. Williams, W.E. Piers, W. Clegg, M.R.J. Elsegood, S. Collins, T.B. Marder, J.
Am. Chem. Soc. 121 (1999) 3244.
[18] L.O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quinones,
V. Brecht, I. Krossing, Angew. Chem. Int. Ed. 47 (2008) 7659.
[19] A.K. Chakraborti, S. Rudrawar, A. Kondaskar, Eur. J. Inorg. Chem. (2004) 3597.
4.5. Kinetic measurements
Aniline (5 mmol, 0.456 mL), catalyst
dard 4-methylbenzophenone (2.5 mmol, 490 mg) were added to
the reaction vessel under standard conditions and diluted with
1 and internal stan-