potent antitumor agents,5 broad spectrum antibiotics,6
inhibitors of HIV-1 reverse transcriptase,7 and potent
inhibitors of various proteolytic enzymes.8 Limited ex-
amples have been reported on the introduction of the
gem-difluoromethylene moiety.3 Radical,9 carbene,10 and
ionic11 reactions involving gem-difluorinated carbon spe-
cies have been utilized. New and convenient methods for
the synthesis of gem-difluoromethylene compounds, in-
volving readily available sources of gem-difluorinated
compounds, are still highly desirable.
As part of our ongoing effort in the synthesis of new
fluorinated compounds with potential biological and
synthetic applications, we wish to report the novel use
of bromodifluorophenylsulfanylmethane 1 as a CF2 “build-
ing block” via the carbon-carbon bond formation between
the previously unknown difluorophenysulfanylmethyl
radical 2 and olefins.3 It is anticipated that the presence
of the phenylsulfanyl group will exert a stabilizing effect
on the radical and will provide a functional group in the
adducts for further chemical manipulation.
Diflu or op h en ylsu lfa n ylm eth yl Ra d ica l a n d
Diflu or om eth ylen e Dir a d ica l Syn th on s:
gem -Diflu or om eth ylen e Bu ild in g Block
Vichai Reutrakul,* Thanchanok Thongpaisanwong,
Patoomratana Tuchinda, Chutima Kuhakarn, and
Manat Pohmakotr*
Department of Chemistry, Faculty of Science,
Mahidol University, Rama 6 Road,
Bangkok 10400, Thailand
scvrt@mahidol.ac.th; scmpk@mahidol.ac.th
Received J une 17, 2004
Abstr a ct: Bromodifluorophenylsulfanylmethane has been
demonstrated to be a highly versatile gem-difluoromethylene
(CF2) building block via the reaction of difluorophenylsul-
fanylmethyl radical with olefins. gem-Difluoroalkenes and
products containing a midchain CF2 group and with ma-
nipulatable functionality can be readily synthesized. The
first example of a gem-difluoromethylene radical synthon is
also reported.
Compound 1 was readily synthesized by the reaction
of sodium phenylthiolate with dibromodifluoromethane.12
After considerable experimentation on various reagents
for the generation13 of the radical 2, it was found that
the three procedures are complementary to each other;
The ability of the fluorine atom to enhance biological
and therapeutic activity has led to widespread interest
in the selective introduction of either one or two fluorine
atoms into organic molecules. Organofluorine chemistry
is receiving remarkable interest due to the enormous
utility of organofluorine compounds in several fields such
as medicinal, biological, agricultural, and analytical
chemistry.1 The replacement of hydrogen atoms by
fluorine atoms in biological molecules causes a relatively
small steric perturbation but leads to major changes in
lipophilicity and polarity factors.2 Of particular interest
is the introduction of a gem-difluoromethylene moiety
into organic molecules.3 It has been reported that the CF2
group has a steric profile similar to that of the CH2 group,
but since it has both a very different polarity and
reactivity, it can be regarded as an isopolar and isosteric
replacement for oxygen.1g,4 Certain molecules incorporat-
ing a difluoromethylene unit have been shown to act as
(5) (a) Yamazaki, T.; Haga, J .; Kitasume, T. Bioorg. Med. Chem.
Lett. 1991, 1, 271-276. (b) Fernandez, R.; Castillon, S. Tetrahedron
1999, 55, 8497-8508 and references cited.
(6) Bravo, P.; Crucianelli, M.; Ono, T.; Zanda, M. J . Fluorine Chem.
1999, 97, 27-49 and references cited.
(7) Burkholder, C. R.; Dolbier, W. R., J r.; Medebielle, M. J . Fluorine
Chem. 2000, 102, 369-376.
(8) Balnaves, A. S.; Gelbrich, T.; Hursthouse, M. B.; Light, M. E.;
Palmer, M. J .; Percy, J . M. J . Chem. Soc., Perkin Trans. 1 1999, 2525-
2535 and references cited.
(9) (a) Dolbier, W. R., J r. Chem. Rev. 1996, 96, 1557-1584. (b)
Buttle, L. A.; Motherwell, W. B. Tetrahedron Lett. 1994, 35, 3995-
3998 and references cited therein. (c) Uneyama, K.; Yanagiguchi, T.;
Asai, H. Tetrahedron Lett. 1997, 38, 7763-7764. (d) Amii, H.; Kondo,
S.; Uneyama, K. Chem. Commun. 1998, 1845-1846. (e) Nguyen, B.
V.; Yang, Z. Y.; Burton, D. J . J . Org. Chem. 1998, 63, 2887-2891. (f)
Itoh, T.; Sakabe, K.; Kudo, K.; Ohara, H.; Takagi, Y.; Kihara, H.;
Zagatti, P.; Renou, M. J . Org. Chem. 1999, 64, 252-265 and references
cited therein. (g) Osipov, S. N.; Burger, K. Tetrahedron Lett. 2000, 41,
5659-5662. (h) Peng, S.; Qing, F. L. J . Fluorine Chem. 2000, 103, 135-
137. (i) Hapiot, P.; Medebielle, M. J . Fluorine Chem. 2001, 107, 285-
300 and references cited therein. (j) Wang, Y.; Zhu, S. Synthesis 2002,
1813-1818. (k) Peng, W.; Zhu, S. Tetrahedron 2003, 59, 4395-4404.
(l) Okano, T.; Chokai, M.; Hiraishi, M.; Yoshizawa, M.; Kusukawa, T.;
Fujita, M. Tetrahedron 2004, 60, 4031-4035.
* Corresponding authors. Phone: +66-2-201-5142. Fax: +66-2-644-
5126.
(10) (a) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585-
1632. (b) Xu, W.; Chen, Q. Y. Org. Biomol. Chem. 2003, 1, 1151-1156
and references cited.
(1) (a) Soloshonok, V. A., Ed. Enantiocontrolled challenges and
Biochemical Targets; J ohn Wiley & Sons Ltd.: Chichester and New
York, 1999. (b) Welch, J . T., Ed. Selective Fluorination in Organic and
Bioorganic Chemistry; American Chemical Society: Washington, DC,
1990. (c) Welch, J . T. Tetrahedron 1987, 43, 3123-3197. (d) Resnati,
G. Tetrahedron 1993, 49, 9385-9445. (e) Kitazume, T.; Yamazaki, T.
Top. Curr. Chem. 1997, 193, 91-130. (f) Percy, J . M. Top. Curr. Chem.
1997, 193, 131-195. (g) O’Hagan, D.; Rzepa, H. S. Chem. Commun.
1997, 645-652. (h) Schlosser, M. Angew. Chem., Int. Ed. 1998, 37,
1496-1513. (i) Sutherland, A.; Willis, C. L. Nat. Prod. Rep. 2000, 17,
621-631. (j) Smart, B. E. J . Fluorine Chem. 2001, 109, 3-11.
(2) Tellier, F.; Baudry, M.; Sauveˆtre, R. Tetrahedron Lett. 1997, 38,
5989-5992 and references cited.
(3) (a) Tozer, M. J .; Herpin, T. F. Tetrahedron 1996, 52, 8619-8683.
(b) Burton, D. J .; Yang Z. Y.; Qiu, W. Chem. Rev. 1996, 96, 1641-
1715. (c) Plantier-Royon, R.; Portella, C. Carbohydr. Res. 2000, 327,
119-146.
(4) (a) Chen, J .; Hu, C. H. J . Chem. Soc., Perkin Trans. 1 1994,
1111-1114 and references cited therein. (b) Berkowitz, D. B.; Bhuniya,
D.; Peris, G. Tetrahedron Lett. 1999, 40, 1869-1872.
(11) (a) Burton, D. J . Chem. Rev. 1996, 96, 1641-1715. (b) Kirihara,
M.; Takuwa, T.; Takizawa, S.; Momose, T. Tetrahedron Lett. 1997, 38,
2853-2854. (c) Katritzky, A. R.; Nichols, D. A.; Qi, M. Tetrahedron
Lett. 1998, 39, 7063-7066. (d) Wang, Z. G.; Hammond, G. B. Chem.
Commun. 1999, 2545-2546. (e) Itoh, T.; Kudo, K.; Tanaka, N.; Sakabe,
K.; Takagi, Y.; Kihara, H. Tetrahedron Lett. 2000, 41, 4951-4595. (f)
Clavel, P.; Biran, C.; Bordeau, M.; Roques, N.; Tre´vin, S. Tetrahedron
Lett. 2000, 41, 8763-8767. (g) Portella, C.; Brigaud, T.; Lefebvre, O.;
Plantier-Royon, R. J . Fluorine Chem. 2000, 101, 193-198. (h) Burkhold-
er, C. R.; Dolbier, W. R., J r.; Me´debielle, M. J . Fluorine Chem. 2001,
109, 39-48. (i) Staas, D. D.; Savage, K. L.; Homnick, C. F.; Tsou, N.
N.; Ball, R. G. J . Org. Chem. 2002, 67, 8276-8279. (j) Cox, L. R.;
DeBoos, G. A.; Fullbrook, J . J .; Percy, J . M. Org. Lett. 2003, 5, 337-
339. (k) Prakash, S. G. K.; Hu, J .; Mathew, T.; Olah, G. A. Angew.
Chem., Int. Ed. 2003, 42, 5216-5219. (l) Prakash, S. G. K.; Hu, J .;
Olah, G. A. J . Org. Chem. 2003, 68, 4457-4463.
(12) (a) Burton, D. J .; Wiemers, D. M. J . Fluorine Chem. 1981, 18,
573-582. (b) Suda, M.; Hino, C. Tetrahedron Lett. 1981, 22, 1997-
2000.
10.1021/jo0489768 CCC: $27.50 © 2004 American Chemical Society
Published on Web 08/26/2004
J . Org. Chem. 2004, 69, 6913-6915
6913