Inorg. Chem. 2004, 43, 6511−6512
Dramatic Effect of Heteroatom Backbone Substituents on the Ethylene
Polymerization Behavior of Bis(imino)pyridine Iron Catalysts
Theo M. Smit, Atanas K. Tomov, Vernon C. Gibson,* Andrew J. P. White, and David J. Williams
Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
Received July 13, 2004
Scheme 1
Bis(imino)pyridine iron complexes bearing ether and thioether
backbone substituents have been synthesized and evaluated for
the polymerization of ethylene. The methoxy derivative is inactive
whereas bulky phenoxides or thioether derivatives afford activities
as high as the most active systems reported to date.
The discovery of highly active olefin polymerization
catalyts based on bis(imino)pyridine complexes of iron and
cobalt1 provided a significant impetus to the search for
polymerization systems based on the late transition metals.2
While many modifications to the ligand aryl substituents and
central donor moiety have been described,3 relatively little
attention has been given to the effect of changes to the
substituents at the imine carbon atoms. Here, we describe
iron catalysts that incorporate ether and thioether groups and
The ether and thioether derivatized proligands 1a-4a were
prepared by treatment of pyridine-2,6-dicarboxyimidoyl
dichloride with NaER according to Scheme 1. Their subse-
quent treatment with anhydrous iron(II)chloride afforded the
heteroatom-derivatized precatalysts 1b-4b.
The starting point for our catalytic studies was the methoxy
derivative 1b whose molecular structure was found to be
closely related to its ketimine relative, 5b (ER ) Me),1c with
a distorted trigonal bipyramidal geometry at the iron center
(Figure 1).
Contrastingly, though, 1b was found to be inactive for
ethylene polymerization under a variety of conditions of
temperature, pressure, and activator. A possible explanation
for this is attack on the ligand backbone by the Lewis acid
activator of a type seen in vanadium catalyst systems.4
However, this seems to be ruled out by the finding that free
ligand 1a is recovered quantitatively after treatment of 1b
with MAO. An alternative explanation is reversible binding
of the activator at the heteroatom leading to destabilization
of the catalyst, possibly via ligand dissociation, or decom-
position of the active iron-alkyl propagating species. In
order to probe the possibility of the activator binding to the
heteroatom, we targeted the 2,6-dimethylphenyl ether deriva-
tive 3b where it was envisaged that the increased steric
the surprising finding that small ether units afford catalyti-
cally inactive systems whereas large ether and thioether
substituents give catalysts with very high productivities.
* To whom correspondence should be addressed. E-mail: v.gibson@
imperial.ac.uk.
(1) (a) Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P.
J.; McTavish, S. J.; Solan, G. A.; White, A. J. P.; Williams, D. J.
Chem. Commun. 1998, 849-850. (b) Small, B. L.; Brookhart, M.;
Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 4049-4050. (c)
Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.;
Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan,
G. A.; Stromberg, S.; White, A. J. P.; Williams, D. J. J. Am. Chem.
Soc. 1999, 121, 8728-8740.
(2) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int.
Ed. 1999, 38 428. Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem.
ReV. 2000, 100, 1169. Gibson, V. C.; Spitzmesser, S. K. Chem. ReV.
2003, 103, 283.
(3) Britovsek, G. J. P.; Baugh, S. P. D.; Hoarau, O.; Gibson, V. C.; Wass,
D. F.; White, A. J. P.; Williams, D. J. Inorg. Chim. Acta 2003, 345,
279-291. Abu-Surrah, A. S.; Lappalainen, K.; Piironen, U.; Lehmus,
P.; Repo, T.; Leskela, M. J. Organomet. Chem. 2002, 648, 55-61.
Britovsek, G. J. P.; Gibson, V. C.; Hoarau, O. D.; Spitzmesser, S. K.;
White, A. J. P.; Williams, D. J. Inorg. Chem. 2003, 42, 3454-3465.
Al-Benna, S.; Sarsfield, M. J.; Thornton-Pett, M.; Ormsby, D. L.;
Maddox, P. J.; Bres, P.; Bochmann, M. J. Chem. Soc., Dalton Trans.
2000, 4247-4257. Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B.
S.; Mastroianni, S.; Redshaw, C.; Solan, G. A.; White, A. J. P.;
Williams, D. J. J. Chem. Soc., Dalton Trans. 2001, 1639-1644.
Britovsek, G. J. P.; Gibson, V. C.; Mastroianni, S.; Oakes, D. C. H.;
Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Eur. J.
Inorg. Chem. 2001, 431-437. Chen, Y. F.; Chen, R. F.; Qian, C. T.;
Dong, X. C.; Sun, J. Organometallics 2003, 22, 4312-4321. Chen,
Y. F.; Qian, C. T.; Sun, J. Organometallics 2003, 22, 1231-1236.
(4) Reardon, D.; Conan, F.; Gambarotta, S.; Yap, G.; Wang, Q. Y. J.
Am. Chem. Soc. 1999, 121, 9318.
10.1021/ic0490775 CCC: $27.50
Published on Web 08/26/2004
© 2004 American Chemical Society
Inorganic Chemistry, Vol. 43, No. 21, 2004 6511