A R T I C L E S
Sun et al.
Table 1. Optimization of Cycloisomerization
Scheme 1
entry
cataylst
solvent
temp,
°
C
yield,a
%
1
2
3
4
5
6
7
AgNTf2 (10 mol %)
AgOTf (10 mol %)
AuCl (5 mol %)
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
toluene
20
20
20
20
20
20
80
<5b
<5b
93
AuCl (1 mol %)
93
PPh3AuCl (5 mol %)
PPh3AuCl/AgBF4 (5 mol %)
PtCl2 (10 mol %)
<5c
88
66
a Refers to isolated yields of spectroscopically pure products that were
full characterized by NMR, IR, and MS. b Complex mixture of products
was observed. c No reaction was observed.
identified as siloxy cyclohexadiene 2 (entry 3). Structural
assignment of 2 was based on a series of NMR studies, including
COSY, NOESY, HMQC, and HMBC experiments, which
unambiguously established the structure of cyclohexadiene 2,
corresponding to a formal and highly unusual migration of a
siloxy substituent from the C(1) to the C(6) position. Subsequent
experimentation established that the catalytic loading of AuCl
can be decreased to 1 mol % with the reaction being complete
within 20 min at room temperature, highlighting the remarkable
catalytic efficiency of this process. Addition of triphenylphos-
phine resulted in inhibition of catalytic activity presumably due
to the competitive binding of the phosphine ligand to Au(I).
The catalytic efficiency, however, can be recovered using Au-
(PPh3)Cl in the presence of AgBF4, presumably due to the
generation of a cationic gold complex. Among several other
metal salts examined, we found that the cycloisomerization can
also be catalyzed by PtCl2 (10 mol %) at 80 °C in benzene to
give cyclohexadiene 2 in 66% yield (entry 7). These studies
revealed that AuCl proved to be the most effective catalyst for
the cycloisomerization of siloxy enyne 1.
allyl bromide 4,9 followed by desilylation, afforded terminal
alkyne 5. Generation of lithium acetylide, followed by oxidation
with t-BuOOLi and silylation using TIPSOTf, furnished the
required siloxy alkyne 6 in quantitative yield.10 Subjection of
siloxy enyne 3 to AuCl (1 mol %) at 20 °C in CH2Cl2 afforded
the expected siloxy diene 7 in 50% yield (Scheme 1). The
5-trimethylsilylmethyl group was retained in the cyclization
product 4 despite the labile nature of this material. Subsequent
treatment of siloxy diene 7 with aq. HCl in MeCN afforded
1,3-cyclohexenone 8 in 77% yield. This experiment demon-
strated chemoselective protodesilylation of the silyl enol ether
fragment in the presence of the allyl silane moiety, providing
efficient synthetic access to a nonconjugated cyclohexenone.
We next examined the outcome of the cycloisimerization upon
introduction of the aryl moieties into the cyclization substrates
(Scheme 2). To this end, we prepared 3-phenyl and 5-phenyl
Scheme 2
Our investigation of the scope of the Au-catalyzed skeletal
reorganization of siloxy enynes began with the preparation of
enyne 6 (Scheme 1). Propargylic alkylation of alkyne 3 with
(6) (a) Blum, J.; Beer-Kraft, H.; Badrieh, Y. J. Org. Chem. 1995, 60, 5567.
(b) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. Organometallics 1996,
15, 901. (c) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J.
Am. Chem. Soc. 1998, 120, 9104. (d) Fu¨rstner, A.; Szillat, H.; Gabor, B.;
Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305. (e) Fu¨rtsner, A.; Szillat,
H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (f) Trost, B. M.; Doherty,
G. A. J. Am. Chem. Soc. 2000, 122, 3801. (g) Fu¨rstner, A.; Szillat, H.;
Stelzer, F. J. Am. Chem. Soc. 2001, 123, 11863. (h) Me´ndez, M.; Mun˜oz,
M. P.; Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc.
2001, 123, 10511. (i) Mainetti, E.; Mouries, V.; Fensterbank, L.; Malacria,
M.; Marco-Contelles, J. Angew. Chem., Int. Ed. 2002, 41, 2132. (j) Martin-
Matute, B.; Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M. J. Am. Chem.
Soc. 2003, 125, 5757. (k) Cadran, N.; Cariou, K.; Herve, G.; Aubert, C.;
Fensterbank, L.; Malacria, M.; Marco-Contelles, J. J. Am. Chem. Soc. 2004,
126, 3408.
(7) (a) Ferrara, J. D.; Djebli, A.; Tessier-Youngs, C.; Youngs, W. J. J. Am.
Chem. Soc. 1988, 110, 647. (b) Clark, T. B.; Woerpel, K. A. J. Am. Chem.
Soc. 2004, 126, 9522 and references therein.
substituted enynes 9 and 11 using a similar alkylation/oxidation
tactic as that described above. Subjection of siloxy enyne 9 to
the standard cycloisomerization protocol afforded the expected
siloxy cyclohexadiene 11 in 73% yield, demonstrating that aryl
substitution at the C(3) position was well tolerated. Treatment
of enyne 11 with AuCl resulted, however, in the formation of
(8) (a) Hashmi, A. S. K., Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000
122, 11553. (b) Hashmi, A. S. K., Schwartz, L.; Choi, J.-H.; Frost, T. M.
Angew. Chem., Int. Ed. 2000, 39, 2285. (c) Mizushima, E.; Sato, K.;
Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 23. (d) Asao,
N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem.
Soc. 2002, 124, 12650. (e) Reetz, M. T.; Sommer, K. Eur. J. Org. Chem.
2003, 3485. (f) He, C.; Shi, Z. J. Org. Chem. 2004, 69, 3669. (g) Kennedy-
Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526.
(h) Yao, X.; Li, C. J. Am. Chem. Soc. 2004, 126, 6884. (i) Asao, N.; Aikawa,
H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458. (j) Yao, T.; Zhang,
X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164. (k) Sherry, B. D.;
Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978. (l) Zhang, L.; Kozmin,
S. A. J. Am. Chem. Soc. 2005, 127, 6962.
(9) ComprehensiVe Carbanion Chemistry; Buncel, E., Durst, T., Eds.; Elsevi-
er: Amsterdam, 1984; Vol. B, pp 107-145.
(10) Julia, M.; Saint-Jalmes, V. P.; Verpeaux, J.-N. Synlett 1993, 3, 233.
9
9706 J. AM. CHEM. SOC. VOL. 128, NO. 30, 2006