Zhu et al.
that the reaction rate could decrease as the reaction temperature
rises, i.e., the lower the temperature, the faster the reaction
rate.12-28 This phenomena used to go by the name of negative
kinetic temperature effect and was interpreted as follows: a
reaction intermediate, the energy of which is lower than the
reactant pair, lies in the course of reaction. Further, the energy
difference between the reactant pair and the reaction intermediate
is larger than the corresponding energy difference between the
intermediate and the transition state of the reaction. Kiselev and
Miller first reported the negative temperature dependence of
rates for the Diels-Alder reaction of tetracyanoethylene with
9,10-dimethylanthracene via the reaction intermediate of the
charge-transfer complex (CT-complex).12 Later, Fukuzumi and
co-worker observed the CT-complexes formed in the hydride
transfer from the Michler’s hydride to the quinone with the
negative temperature dependence of rates.27 Now, an interesting
question, whether the negative temperature effect exists also in
the hydride transfer from the nicotinamide-adenine dinucleotide
coenzyme NADH in vivo, is worthy of attention. This question,
in fact, has received our attention for a long time, since the
solution of this question evidently is very important to under-
standing the practical kinetics of the hydride transfer from
NADH in vivo.
By examining the past publications, it is found that except
for the paper where Fukuzumi used 9,10-dihydroacridine as the
NADH model and found the negative kinetic temperature effect
on the reaction of 10-methyl-9,10-dihydroacridine with quino-
ne,28 no paper has reported the negative kinetic temperature
effect on the hydride transfer from NADH or its analogues until
now. Since 10-methyl-9,10-dihydroacridine is quite different
from NADH in structure, it is evident that the observation of
the negative kinetic temperature effect on the hydride transfer
from 10-methyl-9,10-dihydroacridine to the quinone is not an
efficient indicator that NADH could also have the same property
of negative kinetic temperature effect on the hydride transfer.
1-Benzyl-1,4-dihydronicotinamide (BNAH), due to having
a very similar structure as NADH, is extensively used as the
model of NADH,4,9,29 and many experiments have shown that
BNAH can form a charge-transfer complex with some suitable
substrates before the complete hydride transfer,30 which indicates
that the negative kinetic temperature effect on the hydride
transfer from NADH and its close analogue BNAH could occur.
In this paper, we used BNAH as the NADH model and the
radical cation of N-benzylphenothiazine (PTZ•+)31 as the hydride
acceptor to examine the kinetic temperature effect on the hydride
transfer from BNAH to PTZ•+. As a result, a significant negative
kinetic temperature effect on the hydride transfer from BNAH
to PTZ•+ was observed.
(3) (a) Zielonka, J.; Marcinek, A.; Adamus, J.; Gebicki, J. J. Phys. Chem.
A. 2003, 107, 9860. (b) Marcinek, A.; Rogowski, J.; Adamus, J.; Gebicki,
J.; Bednarek, P.; Bally, T. J. Phys. Chem. A 2000, 104, 718. (c) Marcinek,
A.; Adamus, J.; Huben, K.; Gebicki, J.; Bartczak, T. J.; Bednarek, P.; Bally,
T. J. Am. Chem. Soc. 2000, 122, 437. (d) Gebicki, J.; Marcinek, A.; Zielonka,
J. Acc. Chem. Res. 2004, 37, 379.
(4) (a) Fukuzumi, S.; Inada, O.; Suenobu, T. J. Am. Chem. Soc. 2003,
125, 4808. (b) Fukuzumi, S.; Inada, O.; Suenobu, T. J. Am. Chem. Soc.
2002, 124, 14538.
(5) (a) Powell, F.; Wu, S. C.; Bruice, T. C. J. Am. Chem. Soc. 1984,
106, 3850. (b) Carlson, B. W.; Miller, L. L. J. Am. Chem. Soc. 1983, 105,
7453. (c) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am.
Chem. Soc. 1987, 109, 305. (d) Sinha, A.; Bruice, T. C. J. Am. Chem. Soc.
1984, 106, 7291. (e) Carlson, B. W.; Miller, L. L.; Neta, P.; Gradkowski,
J. J. Am. Chem. Soc. 1984, 106, 7233. (f) Lai, C. C.; Colter, A. K. J. Chem.
Soc., Chem. Commun. 1980, 1115.
(6) Lo, H. C.; Fish, R. H. Angew. Chem., Int. Ed. 2002, 41, 478.
(7) (a) Lee, I.-S. H.; Chow, K.-H.; Kreevoy, M. M. J. Am. Chem. Soc.
2002, 124, 7755. (b) Matsuo, T.; Mayer, J. M. Inorg. Chem. 2005, 44, 2150.
(8) (a) Ellis, W. W.; Raebiger, J. W.; Curtis, C. J.; Bruno, J. W.; DuBois,
D. L. J. Am. Chem. Soc. 2004, 126, 2738. (b) Reichenbach-Klinke, R.;
Kruppa, M.; Konig, B. J. Am. Chem. Soc. 2002, 124, 12999. (c) Bartlett,
P. N.; Simon, E. J. Am. Chem. Soc. 2003, 125, 4014.
(9) (a) Zhu, X.-Q.; Yang, Y.; Zhang, M.; Cheng, J.-P. J. Am. Chem.
Soc. 2003, 125, 15298. (b) Zhu, X.-Q.; Li, H.-R.; Li, Q.; Ai, T.; Lu, J.-Y.;
Yang, Y.; Cheng, J.-P. Chem. Eur. J. 2003, 9, 871. (c) Zhu, X.-Q.; Cao,
L.; Liu, Y.; Yang, Y.; Lu, J.-Y.; Wang, J.-S.; Cheng, J.-P. Chem. Eur. J.
2003, 9, 3937. (d) Zhang, B.-L.; Zhu, X.-Q.; Lu, J.-Y.; He, J.-Q.; Wang, P.
G.; Cheng, J.-P. J. Org. Chem. 2003, 68, 3295.
(10) Buck, H. Intl. J. Quantum Chem. 2005, 101, 389.
(11) Brown, T. L.; LeMay, H. E., Jr.; Bursten, B. E. Chemistry: The
Central Science, 7th ed.; Prentice Hall, 1997; Chapter 14.
(12) Kiselev, V. D.; Miller, J. G. J. Am. Chem. Soc. 1975, 97, 4036.
(13) (a) Braddock, J. N.; Meyer, T. J. J. Am. Chem. Soc. 1973, 75, 3158.
(b) Braddock, J. N.; Cramer, J. L.; Meyer, T. J. J. Am. Chem. Soc. 1975,
97, 1972. (c) Cramer, J. L.; Meyer, T. J. Inorg. Chem. 1974, 13, 1250.
(14) Sutin, N.; Gordon, B. M. J. Am. Chem. Soc. 1961, 83, 70.
(15) (a) Yoder, J. C.; Roth, J. P.; Gussenhoven, E. M.; Larsen, A. S.;
Mayer, J. M. J. Am. Chem. Soc. 2003, 125, 2629. (b) Mader, E. A.; Larsen,
A. S.; Mayer, J. M. J. Am. Chem. Soc. 2004, 126, 8066.
(16) Fukuzumi, S.; Endo, Y.; Imahori, H. J. Am. Chem. Soc. 2002, 124,
10974.
(17) Frank, R.; Greiner, G.; Rau, H. Phys. Chem. Chem. Phys. 1999, 1,
3481.
(18) Fukuzumi, S.; Ohkubo, K. J. Phys. Chem. A 2005, 109, 1105.
(19) (a) Mozurkewich, M.; Lamb, J. J.; Benson, S. W. J. Phys. Chem.
1984, 88, 6435. (b) Lamb, J. J.; Mozurkewich, M.; Benson, S. W. J. Phys.
Chem. 1984, 88, 6441. (c) Sen Sharma, D. K.; Kebarle, P. J. Am. Chem.
Soc. 1982, 104, 19. (d) Menon, A.; Sthyamurthy, N. J. Phys. Chem. 1981,
85, 1021. (e) Meot-Ner(Mautner), M.; Field, F. H. J. Am. Chem. Soc. 1978,
100, 1356. (f) Hiatt, R.; Benson, S. W. J. Am. Chem. Soc. 1972, 94, 6886.
(g) Connor, J.; Roodselaar, A. V.; Fair, R. W.; Strausz, O. P. J. Am. Chem.
Soc. 1971, 93, 560.
(20) (a) Kim, H.-B.; Kitamura, N.; Kawanishi, Y.; Tazuke, S. J. Am.
Chem. Soc. 1987, 109, 2506. (b) Kitamura, N.; Obata, R.; Kim, H.-B.;
Tazuke, S. J. Phys. Chem. 1987, 91, 2033. (c) Kim, H.-B.; Kitamura, N.;
Kawanishi, Y.; Tazuke, S. J. Phys. Chem. 1989, 93, 5757. (d) Kitamura,
N.; Obata, R.; Kim, H.-B.; Tazuke, S. J. Phys. Chem. 1989, 93, 5764.
(21) (a) Olson, J. B.; Koch, T. H. J. Am. Chem. Soc. 1986, 108, 756. (b)
Wang, J.; Doubleday: C. J.; Turro, N. J. J. Am. Chem. Soc. 1989, 111,
3962.
(22) Kapinus, E. I.; Rau, H. J. Phys. Chem. A 1998, 102, 5569.
(23) (a) Moss, R. A.; Lawrynowicz, W.; Turro, N. J.; Gould, I. R.; Cha,
Y. J. Am. Chem. Soc. 1986, 108, 7028. (b) Turro, N. J.; Lehr, G. F.; Butcher,
J. A.; Moss, R. A.; Guo, W. J. Am. Chem. Soc. 1982, 104, 1754.
(24) (a) Shimomura, T.; To¨lle, K. J.; Smid, J.; Szwarc, M. J. Am. Chem.
Soc. 1967, 89, 796. (b) Murphy, R. B.; Libby, W. F. J. Am. Chem. Soc.
1977, 99, 39. (c) Albrecht-Gary, A.-M.; Dietrich-Buchecker, C.; Saad, Z.;
Sauvage, J.-P. J. Chem. Soc., Chem. Commun. 1992, 280. (d) Fernado, S.
R. L.; Maharoof, U. S. M.; Deshayes, K. D.; Kinstle, T. H.; Ogawa, M. Y.
J. Am. Chem. Soc. 1996, 118, 5783.
Results and Discussion
Reaction of G-BNAH with PTZ•+ and the Negative Kinetic
Temperature Effect. The radical cation of N-benzylphenothi-
(28) Fukuzumi, S.; Ohkubo, K.; Tokuda, Y.; Suenobu, T. J. Am. Chem.
Soc. 2000, 122, 4286.
(29) (a) Kobayashi, A.; Konno, H.; Sakamoto, K.; Sekine, A.; Ohashi,
Y.; Iida, M.; Ishitani, O. Chem. Eur. J. 2005, 11, 4219. (b) Watanabe, S.;
Kosaka, N.; Kondo, S.; Yano, Y. Bull. Chem. Soc. Jpn. 2004, 77, 569. (c)
Fukuzumi, S.; Fyujii, Y.; Suenobu, T. J. Am. Chem. Soc. 2001, 123, 10191.
(d) Moriya, H.; Kajiki, T.; Watanabe, S.; Kondo, S.; Yano, Y. Bull. Chem.
Soc. Jpn. 2000, 73, 2539. (e) Liu, Y.-C.; Li, X.-Z.; Yang, C.; Guo, Q.-X.
Bioorg. Chem. 2001, 29, 14. (f) Lu, Y.; Xian, M.; Cheng, J.-P.; Xia, C.-Z.
Acta Chim. Sin. 1997, 55, 1145.
(25) Reitsto¨en, B.; Parker, V. D. J. Am. Chem. Soc. 1990, 112, 4968.
(26) Yamamoto, S.; Sakurai, T.; Yingjin, L.; Sueishi, Y. Phys. Chem.
Chem. Phys. 1999, 1, 833.
(27) Zaman, K. M.; Yamamoto, S.; Nishimura, N.; Maruta, J.; Fukuzumi,
S. J. Am. Chem. Soc. 1994, 116, 12099.
(30) (a) Fukuzumi, S.; Nishizawa, N.; Tanaka, T. J. Org. Chem. 1984,
49, 3571. (b) Hajdu, J.; Sigman, D. S. J. Am. Chem. Soc. 1976, 98, 6060.
(31) (a) Mitchell, P. Aust. N. Z. J. Psych. 1993, 27, 370. (b) Gooley, C.
M.; Keyzer, H.; Setchell, F. Nature 1969, 223, 81. (c) Ohnishi, S.;
McConnell, H. M. J. Am. Chem. Soc. 1965, 87, 2293.
7008 J. Org. Chem., Vol. 71, No. 18, 2006