1114
M. Salavati-Niasari et al. / Polyhedron 28 (2009) 1111–1114
[Ni(O4C2)(H2O)4] calcined at 450ꢀC for 2 h and resulted 9 nm nano-
particles (sample 1) [5], 0.5 g [Ni(O4C2)(H2O)4] and 5 mL of oleyl-
amine were mixed and heated in 240ꢀC for 45 min so led to NiO
agglomerations which show size of more than 1000 nm (sample
2) (Fig. 6). Also 0.5 g [Ni(O4C2)(H2O)4] and 5 g of TPP were heated
together in 240ꢀC for 45 min, after washing with ethanol no precip-
itations were obtained. To prepare NiO nanoclusters (sample 4),
the procedure mentioned in Section 2, including C18H37N and
TPP, was done. Considering different condition employed to pre-
pare these samples, it is obvious that using both C18H37 N and
TPP as capping agent is preferred for NiO nanoclusters synthesis.
4. Conclusion
NiO nanoclusters have been successfully synthesized through a
thermal decomposition of new precursor [Ni(O4C2)(H2O)4] in the
presence of TPP and C18H37N. The as-synthesized nickel oxide
nanoclusters show NiO with cubic structure without any other
impurities. From the results of XRD, FT-IR and TEM, the NiO
nanoclusters show good morphologies corresponding to nanosize
about 2–10 nm, relatively.
Fig. 5. UV–Vis absorption spectrum of the NiO nanoclusters dispersed in C2H5OH.
Table 1
Preparation of NiO under different conditions.
Sample
Capping agent
Temperature (ꢀC)
Time
Particles size
1
2
3
4
450
240
240
240
2 h
9 nm [5]
Acknowledgement
oleylamine
TPP
oleylamine + TPP
45 min
45 min
45 min
agglomeration
no product
2.7 nm
Authors are grateful to council of University of Kashan for pro-
viding financial support to undertake this work.
References
[1] C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Science 276 (1997) 398.
[2] Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Thermochim. Acta 437 (2005) 106.
[3] Y.R. Uhma, J.H. Park, W.W. Kima, C.H. Chob, C.K. Rhee, Mater. Sci. Eng. B 106
(2004) 224.
[4] S.H. Lin, F.R. Chen, J.J. Kai, Appl. Surf. Sci. 254 (2008) 3357.
[5] X. Wang, J. Song, L. Gao, J. Jin, H. Zheng, Z. Zhang, Nanotechnology 16 (2005)
37.
[6] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236 (1993) 27.
[7] V. Srinivasan, J. Weidner, J. Electrochem. Soc. 144 (1997) L210.
[8] J. He, H. Lindström, A. Hagfeldt, S.E. Lindquist, J. Phys. Chem. B 103 (1999)
8940.
[9] R. Cinnsealach, G. Boschloo, S.N. Rao, D. Fitzmaurice, Sol. Energy Mater. Sol.
Cells 57 (1999) 107.
[10] K. Yoshimura, T. Miki, S. Tanemura, Jpn. J. Appl. Phys. 34 (1995) 2440.
[11] C. Natarajan, H. Matsumoto, G. Nogami, J. Electrochem. Soc. 144 (1997) 121.
[12] C.S. Carney, C.J. Gump, A.W. Weimer, Mater. Sci. Eng. A 431 (2006) 1.
[13] A. Surca, B. Orel, B. Pihlar, P. Bukovec, J. Electroanal. Chem. 408 (1996) 83.
[14] J.H. Liang; Y.D. Li, Chem. Lett. 32 (2003) 1126.
[15] Z.H. Liang, Y.J. Zhu, X.L. Hu, J. Phys. Chem. B 108 (2004) 3488.
[16] D.N. Yang, R.M. Wang, J. Zhang, Z.F. Liu, J. Phys. Chem. B 108 (2004) 7531.
[17] R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79 (1997) 1393.
[18] M.H. Shah, Nanoscale Res. Lett. 3 (2008) 255.
[19] P. Palanisamy, A.M. Raichur, Mater. Sci. Eng. C 29 (2009) 199.
[20] X. Song, L. Gao, J. Am. Ceram. Soc. 91 (2008) 3465.
[21] S. Rodríguez-Llamazares, J. Merchán, I. Olmedo, H.P. Marambio, J.P.Muñoz, P.
Jara, J.C. Sturm, B. Chornik, O. Peña, N. Yutronic, M.J. Kogan, J. Nanosci.
Nanotech. 8 (2008) 3820.
[22] B. Corain, G. Schmid, N. Toshima (Eds.), Catalysis and Materials Science: The
Issue of Size Control, Elsevier Publishers, Oxford, 2008, p. 21.
[23] J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, et al., Adv. Mater. 17
(2005) 429.
[24] M. Salavati-Niasari, F. Davar, M. Mazaheri, M. Shaterian, J. Magn. Magn. Mater.
320 (2008) 575.
[25] H.T. Yang, Y.K. Su, C.M. Shen, T.Z. Yang, H.J. Gao, Surf. Interf. Anal. 36 (2004)
155.
[26] K. Nakamoto, Infrared and Raman spectra of Inorganic and Coordination
Compounds, 4th Ed., Wiley, VCH, 1986, p. 245.
[27] M. Salavati-Niasari, Z. Fereshteh, F. Davar, Polyhedron 28 (2009) 126.
[28] M. Salavati-Niasari, F. Davar, N. Mir, Polyhedron 27 (2008) 3514.
[29] G. Boschloo, A. Hagfeldt, J. Phys. Chem. B 105 (2001) 3039.
[30] T. Tsuboi, W. Kleeman, J. Phys.: Condens. Matter 6 (1994) 8625.
Fig. 6. NiO agglomerations (sample 2) synthesized in presence of oleylamine.
C18H37N has been known as a ligand that binds tightly to the metal
nanoparticles surface. The combined effects of TPP and C18H37
N
were much more profound than those of individual contributions.
Furthermore, as capping agents, TPP and oleylamine surround ini-
tial nuclei and result in decomposition of precursor in lower tem-
perature (240 ꢀC). However, the decomposition without these
capping agents (see Fig. 1) occurs in higher temperature (370ꢀC)
[27,28].
Fig. 5 is the UV–Vis spectrum of the as-synthesized NiO nanocl-
usters dispersed in ethanol. A strong absorption in the UV region is
observed at wavelengths about 365 nm, while a broad absorption
appears in the visible region. These absorptions can be attributed
to intra-3d transition of Ni2+ in the cubic structure of NiO [29,30].
In addition, the nickel oxide nanoparticles have been prepared
under different condition (Table 1). By controlling the quality
of nanoparticles, NiO with various sizes can be formed.