Please do not adjust margins
Green Chemistry
Page 4 of 6
COMMUNICATION
Journal Name
complex of the N-aryl tetrahydroisoquinolines and allyl
bromide, we measured the UV-visible spectra of the different
reaction components in the allylation. Immediately after
mixing
Conclusions
DOI: 10.1039/C9GC04191E
In conclusion, we have developed a visible light-induced
α-allylation of N-aryl tetrahydroisoquinolines via the formation
of a novel, photoactive EDA complex. Compared with previous
reports, the present approach offers several advantages: 1) no
need for transition metals or photocatalysts; 2) inexpensive
and readily available allylation reagents; and 3) mild and
operationally simple reaction conditions. The reaction can
tolerate a series of allyl and benzyl bromides, which is of vital
importance for the preparation of homoallylic amines and β-
phenylethylamines.
Br
N
Cs2CO3
Ar
+
N
400 nm, DMF, RT
Ar
H
radical-radical
coupling
Br
+
N
Ar
N
B
D
hv
Br
Notes and references
A
EDA complex
base
- H
1
(a) K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem.
Int. Ed., 2005, 44, 4442; (b) B. M. Trost and M. L. Crawley,
Chem. Rev., 2003, 103, 2921; (c) B. M. Trost, Acc. Chem. Res.,
1996, 29, 355; (d) C. P. Jasperse, D. P. Curran and T. L. Fevig,
Chem. Rev., 1991, 91, 1237; (e) A. M. Haydl, B. Breit, T. Liang
and M. J. Krische, Angew. Chem. Int. Ed., 2017, 56, 11312; (f)
P. Koschker and B. Breit, Acc. Chem. Res., 2016, 49, 1524.
(a) S. A. Lawrence, Amines: Synthesis, Properties and
Applications. Cambridge University Press: Cambridge, 2004;
(b) T. C. Nugent, Chiral Amine Synthesis: Methods,
Developments and Applications, Wiley-VCH, Weinheim,
2010; (c) C. O. Puentes and V. Kouznetsov, J. Heterocycl.
Chem., 2002, 39, 595.
For the proposal of CDC concept, see: (a) Z. Li and C.-J. Li, J.
Am. Chem. Soc., 2004, 126, 11810; (b) C.-J. Li, Acc. Chem.
Res., 2009, 42, 335; For applications of CDC in α-allylation of
tertiary amines, see: (c) G. Kumaraswamy, A. Murthy and A.
Pitchaiah, J. Org. Chem., 2010, 75, 3916; (d) E. Boess and M.
Klussmann, J. Am. Chem. Soc., 2011, 133, 8106; (e) J. W.
Tucker, Y. Zhang, T. F. Jamison and C. R. J. Stephenson,
Angew. Chem. Int. Ed., 2012, 51, 4144; (f) W.-J. Yoo, A.
Tanoue and S. Kobayashi, Asian J. Org. Chem., 2014, 3, 1066;
(g) J. P. Barham, M. P. John and J. A. Murphy, Beilstein J. Org.
Chem., 2014, 10, 2981; (h) L. Mӧhlmann and S. Blechert, Adv.
Synth. Catal., 2014, 356, 2825; (i) T.-T. Wang, M. Schrempp,
A. Berndhäuser, O. Schiemann and D. Menche, Org. Lett.,
2015, 17, 3982; (j) J. Wang and S. Yang, Tetrahedron Lett.,
2016, 57, 3444; (k) T. T. Chen and C. Cai, Synlett., 2017, 28,
1368.
N
Ar
C
H
Scheme 4. Proposed mechanism
the two substrates, the optical absorption spectrum shifted to
the visible region (Scheme 3b).
2
3
Based on the above experiments and literature reports, a
possible mechanism for the visible light-mediated α-allylation
of N-aryl tetrahydroisoquinolines is proposed. Irradiation with
visible light triggers a single-electron transfer (SET) from EDA
complex A involving N-aryl tetrahydroisoquinolines and the
allyl
or
benzyl
bromide
to
form
N-
phenyltetrahydroisoquinoline radical cation C and allyl or
benzyl radical B and release a bromide anion. Deprotonation
of the radical cation resulted in the formation of α-amino
radical D. A radical-radical coupling reaction could then
provide the α-allylation product.
In conclusion, we have developed a visible light-induced α-
allylation of N-aryl tetrahydroisoquinolines via the formation
of a novel, photoactive EDA complex. Compared with previous
reports, the present approach offers several advantages: 1) no
need for transition metals or photocatalysts; 2) inexpensive
and readily available allylation reagents; and 3) mild and
operationally simple reaction conditions. The reaction can
tolerate a series of allyl and benzyl bromides, which is of vital
importance for the preparation of homoallylic amines and β-
phenylethylamines.
4
5
(a) S. B. Lang, K. M. ƠNele and J. A. Tunge, J. Am. Chem. Soc.,
2014, 136, 13606; (b) S. B. Lang, K. M. ƠNele, J. T. Douglas
and J. A. Tunge, Chem. Eur. J., 2015, 21, 18589.
(a) J. Xuan, T.-T. Zeng, Z.-J. Feng, Q.-H. Deng, J.-R. Chen, L.-Q.
Lu, W.-J. Xiao and H. Alper, Angew. Chem. Int. Ed., 2015,
54, 1625; (b) Z. Feng, T. Zeng, J. Xuan, Y. Liu, L. Lu and W.-J.
Xiao, Sci. China: Chem., 2016, 59, 171; (c) T. Ide, K. Shimizu,
Y. Kawato, H. Egami and Y. Hamashima, Heterocycle., 2017,
95, 738; (d) S. M. Thullen and T. Rovis, J. Am. Chem. Soc.,
2017, 139, 15504; (e) J. Zheng and B. Breit, Angew. Chem.
Int. Ed., 2019, 58, 3392.
(a) J. Xuan and W. J. Xiao, Angew. Chem. Int. Ed., 2012, 51,
6828; (b) C. K. Prier, D. A. Rankic and D. W. C. MacMillan,
Chem. Rev., 2013, 113, 5322; (c) J. W. Beatty and C. R. J.
Stephenson, Acc. Chem. Res., 2015, 48, 1474; (d) Zhang. B
and A. Studer, Chem. Soc. Rev., 2015, 44, 3505; (e) K. L.
Skubi, T. R. Blum and T. P. Yoon, Chem. Rev., 2016, 116,
10035; (f) J. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy, N.
R. Patel and G. A. Molander, Acc. Chem. Res., 2016, 49, 1429;
(g) D. C. Fabry and M. Rueping, Acc. Chem. Res., 2016, 49,
1969; (h) M. N. Hopkinson, A. Tlahuext-Aca and F. Glorius,
Acc. Chem. Res., 2016, 49, 2261; (i) J. Twilton, C. Le, P. Zhang,
Acknowledgements
We are grateful to the National Natural Science Foundation of China
(21402124 and 21777106), the Training Foundation for Outstanding
Young Teachers in Higher Education Institutions of Guangdong
(YQ2015145), the Project of Featured Innovation in Higher Education
Institutions of Guangdong (2017KTSCX159), the Shenzhen Science and
Technology Foundation (KQJSCX20180328100401788) and the Principal
Foundation of SZU (8570700000307). We gratefully acknowledge the
support from the Instrumental Analysis Center of Shenzhen University.
We also appreciate the thoughtful suggestions from the referees.
6
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins