A R T I C L E S
Ziessel et al.
organic liquid crystals, (organo)gelators, well-defined nanom-
eter-scale or mesoscopic assemblies, thin films, and polymeric
materials that self-assemble from simple elementary units.3-5
It is well accepted that hierarchical self-organization events
involving hydrogen bonding are of significant importance to
the formation of liquid-crystalline phases but also for the
stabilization of existing mesophases.6,7 However, H-bonded
metallomesogens8 have been scarcely described despite the
realization that they might possess unusual properties.9
Hydrogen bonds are commonly responsible for solvent
immobilization by organogelators and to a lesser extent for water
gelation by hydrogelators.5,10 In both cases, to achieve gelation,
there must be a balance between the tendency of the molecules
to dissolve or to aggregate. The same feature is true for
achieving a mesomorphic state for which a balance is required
between the tendency of the molecules to melt or to microseg-
gregate into a noncrystalline state. Likewise, it is more difficult
to find low molecular compounds capable of gelling solvents
and exhibiting a thermotropic mesomorphic behavior.11-13
Molecular recognition and self-assembling processes directed
by complementary hydrogen bonding have received attention
for controlling molecular structures.14-16 In general, hydrogen
bonding in artificial molecular systems is most effective in solid
states or in noncompetitive aprotic organic solvents. However,
recent findings demonstrate that molecular recognition via
hydrogen bonding was also effective at the air-water interface,
in bulk water, or in the lyotropic liquid-crystalline state.17,18
In some studies, pyridyl or bipyridyl moieties have been used
as basic building blocks for the construction of mesomorphic
frameworks19,20 and also as hydrogen-bond acceptors.21,22 In
most of these examples, the engineering of liquid-crystalline
ligands is feasible but when complexed with transition metals,
the mesomorphic property is lost due to the introduction of
additional dipoles, geometric demands of the metal, charges,
and bulkiness of the metal center and surrounding ligands.
However, in other cases, nonmesomorphic ligands allowed one
to prepare metallomesogens by wrapping the ligands around
metals.23,24 The shape of the molecule and the balance between
the rigid core and the paraffin chains must sustain microseg-
regation during the heating cycle. In some rare cases, both
ligands and complexes display mesomorphism.25,26 One way
to overcome these difficulties is to engineer a system in which
additional supramolecular binding directors (such as hydrogen
bonding) would stabilize the mesophase in both cases (ligand
and complex). It is surmised that these additional vectors would
stabilize the mesophase within the ligand via intermolecular
hydrogen bonding, whereas in the case of the complex this
hydrogen bonding is switched into intramolecular bonds stabi-
lizing the interlocked molecular structure. Extension of the
concept of directional intermolecular interactions to organogels
would allow the gelation or nongelation of specific solvents.
Such a system is the aim of the present contribution, where we
use derivatized phenanthroline (phen) cores equipped with amide
linkage to generate cationic copper(I) and mesogenic materials.
The switching from inter- to intrahydrogen bonding is high-
lighted by the reversible immobilization of the solvent by the
ligands but not by the complexes.
(3) (a) Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J.
M.; Sibesma, R. P.; Meijer, E. W. Nature 2000, 407, 167. (b) Jonkheijm,
P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; De Feyter, S.; Schenning,
A. P. H. J.; De Schryver, F. C.; Meijer, E. W. Angew. Chem., Int. Ed.
2004, 4, 74.
(4) (a) Paleos, C. M.; Tsiourvas, D. Angew. Chem., Int. Ed. Engl. 1995, 34,
1696. (b) Tschierske, C. Prog. Polym. Sci. 1996, 21, 775. (c) Kato, T.
Struct. Bonding 2000, 96, 95. (d) Lee, H. K.; Lee, H.; Ko, Y. H.; Chang,
Y. J.; Oh, N.-K.; Zin, W.-C.; Kim, K. Angew. Chem., Int. Ed. 2001, 40,
2669. (e) Paleos, C. M.; Tsiourvas, D. Liq. Cryst. 2001, 28, 1127. (f)
Yoshikawa, I.; Li, J.; Sakata, Y.; Araki, K. Angew. Chem., Int. Ed. 2004,
43, 100.
(5) Terech, P.; Weiss, R. G. Chem. ReV. 1997, 97, 3133.
(6) (a) Brienne, M.-J.; Gabard, J.; Lehn, J.-M.; Stibor, I. J. Chem. Soc., Chem.
Commun. 1989, 1868. (b) Fouquey, C.; Lehn, J.-M.; Levelut, A.-M. AdV.
Mater. 1990, 2, 254. (c) Antonietti, M.; Heinz, S. Nachr. Chem. Technol.
Lab. 1992, 40, 308. (d) Lehn, J.-M. Makromol. Chem., Macromol. Symp.
1993, 69, 1. (e) Gulik-Krzywicki, T.; Fouquey, C.; Lehn, J.-M. Proc. Natl.
Acad. Sci. U.S.A. 1993, 90, 163. (f) Kotera, M.; Lehn, J.-M.; Vigneron,
J.-P. J. Chem. Soc., Chem. Commun. 1994, 197. (g) Marchi-Artzner, V.;
Jullien, L.; Gulik-Krzywicki, T.; Lehn, J.-M. Chem. Commun. 1997, 117.
(7) (a) Matsunaga, Y.; Terada, M. Mol. Cryst. Liq. Cryst. 1986, 141, 321. (b)
Kawada, H.; Matsunaga, Y.; Takamura, T.; Terada, M. Can. J. Chem. 1988,
66, 1867. (c) Praefcke, K.; Levelut, A.-M.; Kohne, B.; Eckert, A. Liq. Cryst.
1989, 6, 263. (d) Ebert, M.; Kleppinger, R.; Soliman, M.; Wolf, M.;
Wendorf, J. H.; Latterman, G.; Staufer, G. Liq. Cryst. 1990, 7, 553. (e)
Tomazos, D.; Out, G.; Heck, J. A.; Johansson, G.; Percec, V.; Moˆller, M.
Mol. Cryst. Liq. Cryst. 1991, 16, 509. (f) Festag, R.; Kleppinger, R.;
Soliman, M.; Wendorff, J. H.; Latterman, G.; Staufer, G. Liq. Cryst. 1992,
11, 699. (g) Maltheˆte, J.; Levelut, A.-M.; Lie´bert, L. AdV. Mater. 1992, 4,
37. (h) Kato, T.; Kihara, H.; Kumar, U.; Uryu, T.; Fre´chet, J. M. Angew.
Chem., Int. Ed. Engl. 1994, 33, 1644. (i) Maltheˆte, J.; Davidson, P. Bull.
Soc. Chim. Fr. 1994, 131, 812. (j) Kleppinger, R.; Lillya, C. P.; Yang, C.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1637. (k) Albouy, P. A.; Guillon,
D.; Heinrich, B.; Levelut, A.-M.; Maltheˆte, J. J. Phys. II Fr. 1995, 5, 1617.
(l) Koh, K. N.; Araki, K.; Komori, T.; Shinkai, S. Tetrahedron Lett. 1995,
36, 5191. (m) Palmans, A. R. A.; Vekemans, J. A. J. M.; Fischer, H.;
Hikmet, R. A.; Meijer, E. W. Chem.-Eur. J. 1997, 3, 300. (n) Kleppinger,
R.; Lillya, C. P.; Yang, C. J. Am. Chem. Soc. 1997, 119, 4097. (o) Kato,
T.; Kubota, Y.; Uryu, T.; Ujiie, S. Angew. Chem., Int. Ed. Engl. 1997, 36,
1617. (p) Suarez, M.; Lehn, J.-M.; Zimmerman, S. C.; Skoulios, A.;
Heinrich, H. J. Am. Chem. Soc. 1998, 120, 9526.
As a matter of fact, mesomorphic (lyotropic or thermotropic)-
derivatized phenanthroline chelates are rare and are never
involved in hydrogen-bonded networks.27,28 More surprisingly,
only a few references describe thermotropic metal-containing
(14) (a) Rebek, J., Jr. Acc. Chem. Res. 1990, 23, 99. (b) Garcia-Tellado, F.;
Geib, S. J.; Goswami, S.; Hamilton, A. D. J. Am. Chem. Soc. 1991, 113,
9265.
(15) Lehn, J.-M.; Mascal, M.; Decian, A.; Fischer, J. J. Chem. Soc., Perkin
Trans. 2 1992, 461.
(16) (a) Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc. 1990, 112, 6409. (b)
Zerkowski, J. A.; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc. 1992,
114, 5473.
(17) Sasaki, D. Y.; Kurihara, K.; Kunitake, T. J. Am. Chem. Soc. 1991, 113,
9685 and references therein.
(18) Kimizuka, N.; Kawasaki, T.; Kunitake, T. J. Am. Chem. Soc. 1993, 115,
4387.
(19) (a) Bruce, D. W.; Rowe, K. E. Liq. Cryst. 1995, 18, 161; 1996, 20, 183.
(b) Bruce, D. W.; Rowe, K. E. J. Chem. Soc., Dalton Trans. 1995, 3913.
(20) (a) El-ghayoury, A.; Douce, L.; Skoulios, A.; Ziessel, R. Angew. Chem.,
Int. Ed. 1998, 37, 2205. (b) Douce, L.; El-ghayoury, A.; Skoulios, A.;
Ziessel, R. Chem. Commun. 1999, 2033.
(21) (a) Sideratou, Z.; Paleos, C. M.; Skoulios, A. Mol. Cryst. Liq. Cryst. 1995,
265, 19. (b) Koga, T.; Ohba, H.; Takase, H.; Sakagami, S. Chem. Lett.
1994, 2071.
(22) (a) Palmans, A. R. A.; Vekemans, J. A. J. M.; Fischer, H.; Hikmet, R. A.;
Meijer, E. W. Chem.-Eur. J. 1997, 3, 300. (b) Douce, L.; Ziessel, R.; Lai,
H.-H.; Lin, H.-C. Liq. Cryst. 1999, 26, 1797. (c) Brunveld, L.; Lohmeijer,
B. G. G.; Vekmans, J. A. J. M.; Meijer, E. W. Chem. Commun. 2000,
2305.
(23) Ziessel, R. Coord. Chem. ReV. 2001, 216-217, 195.
(24) Douce, L.; Ziessel, R. Mol. Cryst. Liq. Cryst. 2001, 362, 133.
(25) Rowe, K.; Bruce, D. W. Mol. Cryst. Liq. Cryst. 1999, 326, 15.
(26) Okamoto, K.; Matsuoka, Y.; Wakabayashi, Yamagishi, A.; Hoshino, N.
Chem. Commun. 2002, 282.
(27) Munoz, S.; Gokel, G. W. J. Am. Chem. Soc. 1993, 115, 4899.
(28) Bousquet, S. J. P.; Bruce, D. W. J. Mater. Chem. 2001, 1769.
(8) Donnio, B.; Guillon, D.; Bruce, D. W.; Deschenaux, R. Metallomesogens.
In ComprehensiVe Coordination Chemistry II: From Biology to Nano-
technology; McCleverty, J. A., Meyer, T. J., Eds.; Elsevier: Oxford, U.K.,
2003; Vol. 7, Chapter 7.9 (Fujita, M., Powell, A., Eds.), pp 357-627.
(9) Deschenaux, R.; Monnet, F.; Serrano, E.; Turpin, F.; Levelut, A.-M. HelV.
Chim. Acta 1998, 81, 2072.
(10) Estoff, L. A.; Hamilton, A. D. Chem. ReV. 2004, 104, 1201.
(11) (a) Ohta, K.; Hasebe, H.; Moriya, M.; Fujimoto, T.; Yamamoto, I. J. Mater.
Chem. 1991, 1, 831. (b) Ohta, K.; Moriya, M.; Ikejima, M.; Hasebe, H.;
Kobayashi, N.; Yamamoto, I. Bull. Chem. Soc. Jpn. 1997, 70, 1199. (c)
Van Gorp, J. J.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc.
2002, 124, 14759.
(12) (a) Kato, T. Struct. Bonding 2000, 96, 95. (b) Mizoshita, N.; Monobe, H.;
Inoue, M.; Ukon, M.; Watanabe, T.; Shimizu, Y.; Hanabusa, K.; Kato, T.
Chem. Commun. 2002, 428.
(13) Camerel, F.; Faul, C. F. J. Chem. Commun. 2003, 1958.
9
12404 J. AM. CHEM. SOC. VOL. 126, NO. 39, 2004