Synthesis and Electrochemical Properties of Tetrasubstituted Tetraphenylethenes
(EI): m/z (%) = 404 (76) [M+], 292 (5), 216 (100), 168 (4), 146 (6), 28 (s) cm–1. UV/Vis (CH3CN): λmax = 265 nm. C62H56N4O4 (921.15):
FULL PAPER
(11). C31H28N2O3 (476.57): calcd. C 78.13, H 5.92, N 5.88; found C
77.91, H 5.95, N 5.83.
calcd. C 80.84, H 6.13, N 6.08; found C 75.36, H 6.09, N 5.57.
Supporting Information (see also the footnote on the first page of
this article): IR spectroelectrochemical spectra recorded during the
oxidation of tetrakis(4-benzoyloxyphenyl)ethene (1g).
General Procedure for the Preparation of Tetrakis(4-amidophenyl)-
ethenes 1j–k: In a Schenk flask TiCl4 was added to abs. THF in a
N2 atmosphere at 0 °C. Then Zn powder and pyridine were added
followed by dropwise addition of a solution of the respective 3b–d
in THF/CH2Cl2. The reaction mixture was stirred at 60 °C for 20 h,
cooled to room temperature and filtered through Celite. The filtrate
was washed once with K2CO3/H2O (10%) and H2O. The aqueous
layer was extracted three times with CHCl3, and the combined or-
ganic layers were dried (MgSO4) and concentrated under vacuum.
The residue was purified by flash chromatography with hexanes/
acetone (3:1) and recrystallized from acetone/hexanes to give the
products 1j–k as yellowish solid.
Acknowledgments
Generous financial support by the Deutsche Forschungsgemein-
schaft, the Fonds der Chemischen Industrie and the Ministerium
für Wissenschaft, Forschung und Kunst des Landes Baden-
Württemberg is gratefully acknowledged. We would like to thank
Prof. Jürgen Heinze, University of Freiburg, for helpful discussions
and initial experiments.
Tetrakis(4-trifluoroacetamidophenyl)ethene (1j): According to the
General Procedure from 3b (0.606 g, 1.5 mmol) in THF (10 mL)
and CH2Cl2 (5 mL), TiCl4 (0.2 mL, 1.8 mmol), Zn (0.210 g,
3.2 mol), pyridine (0.11 mL, 1.4 mol), THF (15 mL). Yield:
0.257 mg, 0.32 mmol, 43%. M.p. 357 °C. 1H NMR (500 MHz, [D6]-
acetone): δ = 6.97 (d, J = 8.7 Hz, 8 H, 2-H, 6-H), 7.42 (d, J =
8.7 Hz, 8 H, 3-H, 5-H), 10.09 (s, 4 H, NHCO) ppm. 13C NMR
(75 MHz, [D6]acetone): δ = 116.88 (q, 1J = 287.9 Hz, CF3), 120.99,
[1] Review: F. B. Mallory, C. W. Mallory, Org. React. 1984, 30, 1–
456.
[2] a) D. Kuck, A. Schuster, R. A. Krause, J. Tellenbroecker, C. P.
Exner, M. Penk, H. Boegge, A. Müller, Tetrahedron 2001, 57,
3587–3614; b) R. Oliveira, P. San Martin, E. Dominguez, J.
Org. Chem. 2000, 65, 7010–7019; c) J. Nagy, Z. Madarasz, R.
Rapp, A. Szoelloesy, J. Nyitrai, D. Döpp, J. Prakt. Chem. 2000,
342, 281–290; d) L. Eshdat, A. Ayalon, R. Beust, R. Shenhar,
M. Rabinovitz, J. Am. Chem. Soc. 2000, 122, 12637–12645; e) J.
Tellenbroecker, D. Kuck, Angew. Chem. 1999, 111, 1000–1004;
Angew. Chem. Int. Ed. 1999, 38, 919–922; f) T. Ogino, F. Wada,
T. Murayama, S. Aoki, K. Ohshima, Tetrahedron Lett. 1996,
37, 7065–7068; g) A. Couture, E. Deniau, P. Grandclaudon, C.
Simion, Synthesis 1996, 986–990; h) C. Niu, T. Petterson, M. J.
Miller, J. Org. Chem. 1996, 61, 1014–1022; i) T. Sato, S. Shim-
ada, K. Hata, Bull. Chem. Soc. Jpn. 1971, 44, 2484–2490; j) T.
Sato, S. Shimada, K. Hata, Bull. Chem. Soc. Jpn. 1969, 42,
766–772; k) T. Sato, Y. Goto, K. Hata, Bull. Chem. Soc. Jpn.
1967, 40, 1994; l) N. Kharasch, T. G. Alston, H. B. Lewis, W.
Wolf, Chem. Commun. (London) 1965, 242–243; m) F. B. Mal-
lory, C. S. Wood, J. T. Gordon, J. Am. Chem. Soc. 1964, 86,
3094–3102; n) F. B. Mallory, C. S. Wood, J. T. Gordon, L. C.
Lindquist, M. L. Savitz, J. Am. Chem. Soc. 1962, 84, 4361–
4362; o) R. E. Buckles, J. Am. Chem. Soc. 1955, 77, 1040–1041;
p) C. O. Parker, P. E. Spoerri, Nature 1950, 166, 603.
[3] a) C. E. Bunker, N. B. Hamilton, Y.-P. Sun, Anal. Chem. 1993,
65, 3460–3465; b) M. L. Mussons, C. Raposo, J. Anaya, M.
Grande, J. R. Moran, C. Caballero, J. Chem. Soc., Perkin
Trans. 1 1992, 3125–3127; c) B. König, A. de Meijere, Chem.
Ber. 1992, 125, 1895–1898; d) H.-F. Grützmacher, W. Huse-
mann, Tetrahedron Lett. 1985, 26, 2431–2434; e) R. H. Mitch-
ell, L. Mazuch, B. Shell, P. R. West, Can. J. Chem. 1978, 56,
1246–1252; f) M. V. Sargent, C. J. Timmons, J. Chem. Soc.
1964, 5544–5552.
132.70 (C-2, C-3, C-5, C-6), 136.07, 141.67 (C-1, C-4), 140.96
2
(C=C), 155.55 (q, J = 37.2 Hz, CF CO) ppm. FTIR (ATR): ν =
˜
3
3306 (s), 3127 (w), 2934 (w), 1703 (vs), 1596 (m), 1537 (s), 1279
(m), 1242 (m), 1186 (s), 1156 (vs), 915 (m), 823 (m) cm–1. UV/Vis
(CH3CN): λmax = 272 nm. MS (DEI): m/z (%) = 776 (100) [M+],
706 (3), 338 (6). C34H20F12N4O4 (776.53): calcd. C 52.59, H 2.60,
N 7.22; found C 52.84, H 2.88, N 7.21.
Tetrakis[4-(2-methylhexylamido)phenyl]ethene (1k): According to
the General Procedure from 3c (0.5 g, 1.1 mmol) in THF (10 mL)
and CH2Cl2 (3 mL), TiCl4 (0.14 mL, 1.3 mmol), Zn (0.157 g,
2.4 mmol), pyridine (0.08 mL, 1 mol), THF (15 mL). Yield:
120 mg, 0.143 mmol, 26%. M.p. 296 °C. 1H NMR (500 MHz, [D6]-
DMSO): δ = 0.86 (t, J = 7.1 Hz, 12 H, 5Ј-H), 1.06 (d, J = 6.8 Hz,
12 H, 6Ј-H), 1.27–1.58 (m, 9 H, 3Ј-H, 4Ј-H, 2Ј-H), 1.16–1.35 (m,
20 H, 2Ј-H, 3Ј-H, 4Ј-H), 1.55 (m, 4 H, 2Ј-H), 2.39 (sext, J = 6.6 Hz,
4 H, 1Ј-H), 6.87 (d, J = 8.6 Hz, 8 H, 3-H, 5-H), 7.38 (d, J = 8.6 Hz,
4 H, 2-H, 6-H), 9.77 (s, 4 H, NHCO) ppm. 13C NMR (125 MHz,
[D6]DMSO): δ = 11.54 (C-5Ј), 15.57 (C-4Ј), 19.82 (C-6Ј), 26.82 (C-
3), 31.10 (C-2), 38.22 (C-1), 116.14, 128.84 (C-2, C-3, C-5, C-6),
135.18, 136.02 (C-1, C-4), 136.04 (C=C), 172.33 (HNC=O) ppm.
FTIR (ATR): ν = 3296 (s), 2928 (s), 2187 (w), 1979 (w), 1658 (vs),
˜
1589 (s), 1511 (vs), 1402 (s), 1306 (m), 1242 (m), 1180 (m), 825 (s)
cm–1. UV/Vis (CH3CN): λmax = 338, 275, 240 nm. MS (EI): m/z (%)
= 840 (100) [M+], 729 (12), 616 (2), 112 (2), 85 (6), 74 (10), 43 (14).
[4] A. Schultz, S. Laschat, S. Diele, M. Nimtz, Eur. J. Org. Chem.
2003, 2829–2839.
[5] R. Rathore, S. V. Lindeman, A. S. Kumar, J. K. Kochi, J. Am.
Chem. Soc. 1998, 120, 6931–6939.
[6] a) W. J. Leigh, D. R. Arnold, Can. J. Chem. 1981, 59, 3061–
3075; b) V. D. Parker, K. Nyberg, L. Eberson, J. Electroanal.
Chem. Interfacial Electrochem. 1969, 22, 150–152.
Tetrakis[4-(2,4-dimethylbenzamido)phenyl]ethene (1l): According to
the General Procedure from 3d (1 g, 2.1 mmol) in THF (15 mL)
and CH2Cl2 (10 mL), TiCl4 (0.26 mL, 2.4 mmol), Zn (0.312 g,
4.8 mmol), pyridine (0.16 mL, 2 mmol), THF (20 mL). Yield:
1
210 mg, 0.23 mmol, 29%. M.p. 333 °C. H NMR (300 MHz, [D6]- [7] F. Barbosa, V. Peron, G. Gescheidt, A. Fürstner, J. Org. Chem.
1998, 63, 8806–8814.
DMSO): δ = 3.37 (br. s, 12 H, 2Ј-CH3), 3.38 (br. s, 12, 4Ј-H), 7.09–
7.13 (m, 8 H, 6Ј-H, 3Ј-H), 7.33 (d, J = 7.5 Hz, 4 H, 5Ј-H), 7.46 (d,
J = 8.5 Hz, 8 H, 3-H, 5-H), 7.54 (d, J = 8.5 Hz, 8 H, 2-H, 6-H)
ppm. 13C NMR (125 MHz, [D6]DMSO): δ = 19.29 (4Ј-CH3), 20.76
(2Ј-CH3), 119.44, 127.25, 128.16 (C-3Ј, C-5Ј, C-6Ј), 125.95, 131.05
(C-2, C-3, C-5, C-6), 134.39, 135.27, 136.84, 139.02, 139.83 (C-1,
C-4, C-1Ј, C-2Ј, C-4Ј), 167.54 (NHCO) ppm. (The C=C signal was
[8] H. Bock, K. Ruppert, D. Fenske, Angew. Chem. 1989, 101,
1717–1719; Angew. Chem. Int. Ed. Engl. 1989, 28, 1685–1688.
[9] a) H. Bock, C. Näther, Z. Havlas, J. Chem. Soc., Chem. Com-
mun. 1995, 1111–1112; b) T. Suzuki, H. Shiohara, M. Monobe,
T. Sakimura, S. Tanaka, Y. Yamashita, T. Miyashi, Angew.
Chem. 1992, 104, 454–456; Angew. Chem. Int. Ed. Engl. 1992,
31, 455–458; c) N. C. Baenziger, R. E. Buckles, T. D. Simpson,
J. Am. Chem. Soc. 1967, 89, 3405–3408.
not detected.) FTIR (ATR): ν = 3295 (s), 2921 (s), 1656 (vs), 1596
˜
(s), 1512 (vs), 1409 (s), 1319 (s), 1231 (s), 1081 (s), 818 (m), 778
[10] S. Sengupta, Synlett 2004, 1191–1194.
Eur. J. Org. Chem. 2006, 3395–3404
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3403