Table 2 Contact angles on the APABA-modified surfaces for various
liquids
Acknowledgements
This work was supported by The Scientific and Technology
Research Council of Turkey (Project Number: 108M018).
Contact
angle (ꢂ):
trans
Contact
angle (ꢂ):
cis
Contact
angle
change
Hysteresis
Dq
s
qadv
qrec
qadv
qrec
Liquid
Dq (ꢂ)
h
trans (ꢂ)
References
Water
Formamide
Diiodomethane 21.1
38.4
10.3
21.5
20.3
32.3
50.5 29.0 88.9 39.4
51.9 31.6 62.2 21.5
68.5 36.2 47.4 13.5
1 I. Willner, V. Pardo-Yissar, E. Katz and K. T. Ranjit, J. Electroanal.
Chem., 2001, 497, 172.
2 F. Chaput,D. Riehl, Y.LeivyandJ.P. Boilot,Chem. Mater., 1993, 5, 589.
3 H. Rau, Photoisomerization of Azobenzenes. In Photochemistry and
Photophysics; Rabek, J. F., Ed.; CRC Press: Boca Raton, FL, 1990,
Vol. I, (Chapter 2), p. 119.
4 K. Aoki, T. Seki, Y. Suzuki, T. Tamaki, A. Hosoki and K. Ichimura,
Langmuir, 1992, 8, 1007.
5 F. Hamelmann, U. Heinzmann, U. Siemeling, F. Bretthauer and
€
J. Vor der Bruggen, Appl. Surf. Sci., 2004, 222, 1.
6 K. Ishihara, A. Okazaki, N. Negishi, I. Shinohara, K. Kataoka and
Y. Sakurai, J. Appl. Polym. Sci., 1982, 27, 239.
7 A. Ulman, Chem. Rev., 1996, 96, 1533.
8 K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki and K. Aoki, Langmuir,
1988, 4, 1214.
9 L. M. Siewierski, W. J. Brittain, S. Petrash and M. D. Foster,
Langmuir, 1996, 12, 5838.
10 Z. Sekkat, J. Wood, Y. Geerts and W. Knoll, Langmuir, 1995, 11,
2856.
ꢀ
11 M. J. Cook, A. Nygard, Z. Wanga and D. A. Russell, Chem.
Commun., 2002, 1056.
12 F. L. Callari and S. Sortino, J. Mater. Chem., 2007, 17, 4184.
13 K. Ichimura, S. K. Oh and M. Nakagawa, Science, 2000, 288, 1624.
14 Z. Sekkat, J. Wood, Y. Geerts and W. Knoll, Langmuir, 1996, 12, 2976.
15 B. Mouanda, P. Viel and C. Blanche, Thin Solid Films, 1998, 323, 42.
€
€
16 K. H. Schundehutte, Houben-Weyl Methoden der Organischen
Chemie. 10/3, p. 340.
17 F. Patolsky, G. Zheng and C. M. Lieber, Anal. Chem., 2006, 78, 4260.
18 D. Tasis, N. Tagmatarchis, A. Bianco and M. Prato, Chem. Rev.,
2006, 106, 1105.
19 J. J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons,
F. J. Mearns, J. G. Shapter and D. B. Hibbert, J. Am. Chem. Soc.,
2003, 125, 9006.
Fig. 8 The total surface free energy and its components (mJ mꢀ2) after
visible (trans isomer) and UV irradiation (cis isomer) for photoswitchable
substrates calculated from contact angle hysteresis and components
approaches.
20 S. G. Hong and J. J. Lin, J. Polym. Sci., Part B: Polym. Phys., 1997,
35, 2063.
Conclusion
21 N. Tsubokawa, A. Kogure, K. Maruyama, Y. Sone and
M. Shimomura, Polym. J., 1990, 22, 827.
We have prepared a photoswitchable substrate by bonding
APABA molecules on epoxy-terminated siloxane adlayers. To
understand the controllable wettability using light, the advancing
and receding contact angles of droplets on prepared surface were
measured for a variety of liquids for the surface optically
switched into the cis and trans states. From the measurements
and calculations, the averaged values of the total surface free
energy of studied materials can be determined from measure-
ments of advancing and receding contact angles by using the
Lifshitz–van der Waals/acid–base approach. The total surface
energy (gs) after visible light irradiation (trans surface) was
calculated as 37.28 mJ mꢀ2, whereas the value after UV light
exposure (cis surface) was calculated as 36.95 mJ mꢀ2. Moreover
we observed that the trans substrate has higher surface energy
and also higher electron-donor gꢀ interactions because of the
polar head groups. In conclusion, the trans substrates which have
higher surface free energy present carboxyl-group on the surface
by presenting an ‘‘on’’ coordinating state. The surface is effec-
tively switched ‘‘off’’ in the cis form because the coordinating
carboxyl-group on the surface is now directed away from the
surface. We believe that these photoswitchable surfaces may be
useful for potential applications in biochip technology. In
a further step, we will work on the remote control of photo-
switchable properties for binding biomolecules.
22 L. Lan, G. Gnappi and A. Montenero, J. Mater. Sci., 1993, 28, 2119.
23 I. Luzinov, D. Julthongpiput, A. Liebmann-Vinson, T. Cregger,
M. D. Foster and V. V. Tsukruk, Langmuir, 2000, 16, 504.
24 K. L. Mittal (ed.), Silanes and other coupling agents, VSP, Utrecht,
1997, pp. 25.
25 W. Koninklijke, B. V. Utrecht, V. A. Bakaev, T. I. Bakaeva and
C. G. Pantano, J. Phys. Chem. B, 2002, 106, 12231.
26 M. W. Daniels, J. Sefcik, L. F. Francis and A. V. McCormick,
J. Colloid Interface Sci., 1999, 219, 351.
27 H. Rau, In Studies in Organic Chemistry: Photochromism, Molecules
€
and Systems; Durr, H., Bonas-Laurent, H., ed; Elsevier:
Amsterdam, 1990; pp 165.
28 H. S. Lim, J. T. Han, D. Kwak, M. Jin and K. Cho, J. Am. Chem.
Soc., 2006, 128, 14458.
29 L. Ding and T. P. Russel, Macromolecules, 2007, 40, 2267.
30 A. A. Blevins and G. J. Blanchard, J. Phys. Chem. B, 2004, 108, 4962.
€
31 J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-
Bohner, D. Oesterhelt and L. Moroder, J. Photochem. Photobiol., A,
€
1997, 105, 283.
32 N. Hurduc, D. Ade‘s, J. Belleney, A. Siove and G. Sauvet, Macromol.
Chem. Phys., 2007, 208, 2600.
33 T. Tanaka, H. Ogino and M. Iwamoto, Langmuir, 2007, 23, 11417.
34 M. Nakagawa, R. Watase and K. Ichimura, Chem. Lett., 1999, 1209.
35 K. Namiki, A. Sakamoto, M. Murata, S. Kume and H. Nishihara,
Chem. Commun., 2007, 4650.
36 T. Chen, R. Ferris, J. Zhang, R. Ducker and S. Zauscher, Prog.
Polym. Sci., 2010, 35, 94.
37 N. Verplanck, Y. Coffinier, V. Thomy and R. Boukherroub,
Nanoscale Res. Lett., 2007, 2, 577.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 3189–3196 | 3195