ORGANIC
LETTERS
2012
Vol. 14, No. 2
528–531
Synthesis of Tetrafluorinated Aromatic
Amino Acids with Distinct Signatures
in 19F NMR
Luoheng Qin, Christopher Sheridan, and Jianmin Gao*
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill,
Massachusetts 02467-3801, United States
Received November 23, 2011
ABSTRACT
Fluorinated amino acids serve as powerful tools in protein chemistry. We synthesized a series of para-substituted tetrafluorophenylalanines via
the regioselective SNAr chemistry of the commercially available pentafluorophenylalanine Boc-Z. These novel unnatural amino acids display
distinct 19F NMR signatures, making them powerful tools for analyzing proteinꢀmembrane interactions with NMR spectroscopy.
Fluorination has become an increasingly popular strat-
egy in medicinal chemistry and protein engineering due
to the unique properties of fluorinated compounds.1
For example, incorporating fluorinated amino acids into
synthetic proteins often leads to improved stability owing
to the added hydrophobicity by fluorination.2 In addi-
tion, fluorinated amino acids have shown promise as
supramolecular synthons to program protein assembly
in both aqueous and membrane environments.3 Another
attractive feature of fluorinated compounds lies in their
tractability by 19F NMR, which is essentially blind to
endogenous material in biological systems. Furthermore,
the chemical shift of 19F resonances is highly sensitive to
the local environment; therefore, fluorinated amino acids
serve as powerful tools for interrogating protein folding
and proteinꢀmembrane interactions.4 Ideally, multisite
incorporation of fluorinated residues should allow one to
monitor the behavior of a target protein with atomic
resolution across the protein sequence. However, the as-
signment of individual 19F resonances is often challenging5
(1) (a) Marsh, E. N. G. Chem. Biol. 2000, 7, 153–157. (b) Yoder,
N. C.; Kumar, K. Chem. Soc. Rev. 2002, 31, 335–341. (c) Gazit, E. Chem.
Soc. Rev. 2007, 36, 1263–1269. (d) Woll, M. G.; Hadley, E. B.; Mecozzi,
S.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 15932–15933. (e) Ryan,
D. M.; Doran, T. M.; Anderson, S. B.; Nilsson, B. L. Langmuir 2011, 27,
11145–11156.
(2) (a) Bilgicer, B.; Fichera, A.; Kumar, K. J. Am. Chem. Soc. 2001,
123, 4393–4399. (b) Lee, H. Y.; Lee, K. H.; Al Hashimi, H. M.; Marsh,
E. N. J. Am. Chem. Soc. 2006, 128, 337–343. (c) Tang, Y.; Ghirlanda, G.;
Petka, W. A.; Nakajima, T.; DeGrado, W. F.; Tirrell, D. A. Angew.
Chem., Int. Ed. 2001, 40, 1494–1496.
(3) (a) Bilgicer, B.; Xing, X.; Kumar, K. J. Am. Chem. Soc. 2001, 123,
11815–11816. (b) Bilgicer, B.; Kumar, K. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 15324–15329. (c) Zheng, H.; Gao, J. Angew. Chem., Int. Ed.
2010, 49, 8635–8639. (d) Pace, C. J.; Zheng, H.; Mylvaganam, R.; Kim,
D.; Gao, J. Angew. Chem., Int. Ed. (doi: 10.1002/anie.201105857).
(4) (a) Cobb, S.; Murphy, C. J. Fluorine Chem. 2009, 130, 132–143.
(b) Li, C.; Wang, G.; Wang, Y.; Creager-Allen, R.; Lutz, E. A.; Scronce,
H.; Slade, K. M.; Ruf, R. A. S.; Mehl, R. A.; Pielak, G. J. J. Am. Chem.
Soc. 2010, 132, 321–327. (c) Jackson, J.; Hammill, J.; Mehl, R. J. Am.
Chem. Soc. 2007, 129, 1160–1166.
(5) (a) Khan, F.; Kuprov, I.; Craggs, T.; Hore, P.; Jackson, S. J. Am.
Chem. Soc. 2006, 128, 10729–10737. (b) Evanics, F.; Kitevski, J. L.;
Bezsonova, I.; Forman-Kay, J.; Prosser, R. S. Biochem. Biophys. Acta
2007, 1770, 221–230. (c) Li, H.; Frieden, C. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 11993–11998. (d) Kitevski-LeBlanc, J. L.; Evanics, F.;
Prosser, R. S. J. Biomol. NMR 2010, 47, 113–121.
r
10.1021/ol203140n
Published on Web 12/23/2011
2011 American Chemical Society