Characterization of Nα-Fmoc-protected ureidopeptides
In contrast to the isomers discussed above, compound 20 that
has a phenyl glycine at the C-terminus fragments differently. After
the loss of Fmoc, the [M − H − Fmoc + H]− (m/z 222) eliminates an
additional CO2 from the C-terminus to form m/z 178 (Scheme 9).
This loses imine to form m/z 149 as evidenced from the MS4
spectrum of m/z 178 (Table 2 and also Supporting Information).
Formation of these fragments may be attributed to the generation
of a highly stable phenyl carbanion as shown in Scheme 9.
biological evaluation of a new class of transporters for drug
delivery. J. Am. Chem. Soc. 2002, 124, 13382; (c) R. M. J. Liskamp.
Opportunities for new chemical libraries: unnatural biopolymers
and diversomers. Angew.Chem.Int.Ed. 2003, 33, 633; (d) E. J. Moran,
T. E. Wilson, C. Y. Cho, S. R. Cherry, P. G. Schultz. Novel biopolymers
for drug discovery. Biopolymers 2004, 37, 213.
[3] (a) L. Guy, J. Vidal, A. Collet, A. Amour, M. Reboud-Ravaux. Design
and synthesis of hydrazinopeptides and their evaluation as human
leukocyte elastage inhibitors. J. Med. Chem. 1998, 41, 4833;
(b) D. Bonnet, F. Samson, C. Rommens, H. Gras-Masse, O. Melnyk.
Synthesis of hydrazinopeptides using solid-phase N-electrophilic
amination: extension to the Fmoc/tert-butylstrategy and chemistry
of the N–N bond in strong acid media. J. Pept. Res. 1999, 54, 270.
[4] (a) V. V. Sureshbabu, N. Narendra, G. Nagendra. Chiral N-Fmoc-β-
amino alkyl isonitriles derived from amino acids: first synthesis
and application in 1-substituted tetrazole synthesis. J. Org. Chem.
2009, 74, 153; (b) R. V. Ramanarao, V. V. Sureshbabu. Synthesis
of retro-inverso peptides employing isocyanates of Nα-Fmoc-
amino acids catalyzed by DMAP. Tetrahedron Lett. 2006, 47,
9139; (c) V. V. Sureshbabu, N. S. Sudarshan, S. A. Naik. Synthesis of
ureidopeptides and peptidyl ureas employing Bsmoc chemistry.
Int. J. Pept. Res. Ther. 2008, 14, 105.
[5] B. Paizs, S. Suhai. Fragmentation pathways of protonated peptides.
Mass Spectrom. Rev. 2005, 24, 508, and references cited therein.
[6] (a) M. Karas, F. Hillenkamp. Laser desorption ionization of proteins
with molecular masses exceeding 10,000 daltons. Anal. Chem.
1988, 60, 2299; (b) T. Yoshida, K. Tanaka, Y. Ido, S. Akita, K. Yoshida.
Detection of high mass molecular ions by laser desorption time-
of-flight mass spectrometry (in Japanese). Shitsuryo-bunseki (Mass
Spectrom) 1988, 36, 59.
Conclusions
Positive and negative ion ESI-MS/MS has been shown to be very
useful for the structural characterization and differentiation of
fourpairsofNα-Fmoc-protectedureidopeptidepositionalisomers.
The major fragmentation noticed in all these compounds is due
to –N–CH(R)–N–bond cleavage. The MS2 of [M + H]+ ions
of all the studied ureidopeptide acids derived from glycine at
the N-terminus yield an ion at m/z 240 which is absent for
corresponding esters. Another interesting fragmentation noticed
in these compounds is the loss of 61 units from an intermediate
fragment ion FmocNH = CH2+ (m/z 252). A mechanism involving
an INC and a direct loss of NH3 and CO2 is proposed for this
process. Whereas ureidopeptides derived from alanine, leucine
and phenylalanine at the N-terminus eliminate CO2 followed
by corresponding imine to form (9H-fluoren-9-yl)methyl cation
(C14H11+) from FmocNH CHR+. In contrast to the positive ions,
the negative ions of Nα-Fmoc-protected ureidopeptide acids
undergo a McLafferty-type rearrangement ion involving loss of
Fme and Fmoc. It is worth to note that the losses of HNCO ions
are totally absent in negative ion spectra. It can be concluded that
the ESI-MS/MS study of both the protonated and deprotonated
ureidopeptides provides the fragmentation behavior of this new
class of compounds and also useful for differentiating these
isomeric ureidopeptides.
[7] N. L. Clipston, J. Jai-nhuknan, C. J. Cassady.
A comparison of
negative and positive ion time-of-flight post source-decay mass
spectrometry for peptides containing basic residues. Int. J. Mass
Spectrom. 2003, 222, 363.
[8] J. Hardouin. Proteins sequence information by matrix-assisted
laser desorption ionization/time-of-flight mass spectrometry. Mass
Spectrom. Rev. 2007, 26, 672.
[9] R. Srikanth, P. N. Reddy, R. Narsimha, R. Srinivas, G. V. M. Sharma,
K. R. Reddy, P. R. Krishna. Mass spectral study of Boc-carbo-β3-
peptides: differentiation of two pairs of positional and
diastereomeric isomers. J. Mass Spectrom. 2004, 39, 1068.
[10] R. Srikanth, P. N. Reddy, R. Srinivas, G. V. M. Sharma, K. R. Reddy,
P. R. Krishna. Mass spectral study of alkali-cationized Boc-carbo-β3-
peptides by electrospray tandem mass spectrometry. Rapid
Commun. Mass Spectrom. 2004, 18, 3041.
[11] P. N. Reddy, R. Srikanth, N. S. Swamy, R. Srinivas, G. V. M. Sharma,
P. Nagendar, P. R. Krishna. Differentiation of Boc-α,β- and β,
α-peptides and a pair of diastereomeric β,α-dipeptides by positive
and negative ion electrospray tandem mass spectrometry (ESI-
MS/MS). J. Mass Spectrom. 2005, 40, 1429.
[12] P. N. Reddy,R. Srikanth,R. Srinivas,V. U. M. Sharma,G. V. M. Sharma,
P. Nagendar. Electrospray tandem mass spectrometry of alkali-
cationized BocN-carbo-α,β- and β,α-peptides: differentiation of
positional isomers. Rapid Commun. Mass Spectrom. 2006, 20, 3351.
[13] P. N. Reddy, V. Ramesh, R. Srinivas, G. V. M. Sharma, P. Nagendar,
V. Subash. Differentiation of some positional and diastereomeric
isomers of Boc-carbo-β3 dipeptides containing galactose, xylose
and mannose sugars by electrospray ionization tandem mass
spectrometry (ESI-MS/MS). Int. J. Mass Spectrom. 2006, 248, 115.
[14] P. N. Reddy, R. Srinivas, M. R. Kumar, G. V. M. Sharma, V. B. Jadhav.
Positive and negative ion electrospray ionization tandem mass
spectrometry of Boc-protected peptides containing repeats of
L-Ala-γ 4Caa/γ 4Caa-L-Ala: differentiation of some positional
isomeric peptides. J. Am. Soc. Mass Spectrom. 2007, 18, 651.
Acknowledgements
The authors thank Dr J.S. Yadav, Director, IICT, Hyderabad, for
facilities and Dr M. Vairamani for cooperation. M.R. is thankful to
CSIR, New Delhi, for the award of Senior Research Fellowship, B.R.
is thankful to DST, New Delhi, for the award of Junior Research
FellowshipandN.N.andB.V.thankCSIR,NewDelhi,forthefinancial
assistance.
Supporting information
Supporting information may be found in the online version of this
article.
References
[1] (a) M. D. Fletcher, M. M. Campbell. Partially modified retro-inverso
peptides: development, synthesis and conformational behavior.
Chem.Rev. 1998, 98, 763;(b) R. Simon, R. S. Kania, R. N. Zuckermann,
V. D. Huebner, D. A. Jewell, S. Banville, S. Ng, L. Wang, S. Resenberg,
C. K. Marlowe, D. C. Spellmeyer, R. Tans, A. D. Frankelo, D. V. Santi,
F. E. Cohen, P. A. Bartlett. Peptoids: a modular approach to drug
discovery. Proc. Natl. Acad. Sci. USA 1992, 89, 9367.
[2] (a) R. N. Zuckermann, J. M. Kerr, S. B. H. Kent, W. H. Moos. Efficient
method for the peptoids [oligo(N-substituted glycines)] by sub
monomer solid-phase synthesis. J.Am.Chem.Soc. 1992, 114, 10646;
(b) P. A. Wender, J. B. Rothbard, T. C. Jessop, E. L. Kreider, B. L. Wylie.
Oligocarbamate molecular transporter: design, synthesis, and
[15] V. Ramesh,
R. Srinivas,
G. V. M. Sharma,
P. Jayaprakash,
A. C. Kunwar. Differentiation of three pairs of Boc-β,γ - and
γ ,β-hybrid peptides by electrospray ionization tandem mass
spectrometry. J. Mass Spectrom. 2008, 43, 1201.
[16] V. Ramesh, M. Ramesh, R. Srinivas, G. V. M. Sharma, P. Jayaprakash.
Electrospray ionization tandem mass spectrometric study on the
effect of N-terminal β- and γ -carbo amino acids on fragmentation
of GABA-hybrid peptides. Rapid Commun. Mass Spectrom. 2008, 22,
3339.
[17] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse.
Electrospray ionization – principles and practice. Mass Spectrom.
Rev. 1990, 9, 37.
c
J. Mass. Spectrom. 2010, 45, 1461–1472
Copyright ꢀ 2010 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/jms