quinone as an acceptor.12 This suggests that when the linkage is
through quinone, the partial negative charge residing on the
quinone would interact with the porphyrin p-system and might
be responsible for fluorescence enhancement. If this is correct,
then one would expect higher ff on fully reducing the quinone
of 1a instead of the partial negative charge of the quinone–
hydroquinone complex. The following electrochemical studies
suggest that this is more likely the case.
This work was supported by the National Science Foundation
under Grant No. EPS-9550487 and matching support from the
State of Kansas.
Footnotes
† E-mail: dsouza@wsuhub.uc.twsu.edu
‡ dH(CDCl3) 8.90 (m, 8 H, pyrrole-H), 8.20 (s, 6 H, ortho-H of the triphenyl
entity), 7.75 (m, 9 H, meta- and para-H), 7.29, 7.60, 8.38 (d, d and s, 3 H,
quinone-H) and 22.78 (s, 2 H, imino-H). lmax (PhCN)/nm (log e) 414.6
(5.85), 511.6 (4.31), 542.2 (3.77), 590.3 (3.75) and 649.8 (3.66).
§ Addition of excess of hydroquinone to a solution of H2TPP resulted in no
appreciable changes in the fluorescence emission.
¶ Fluorescence quantum yields were calculated using the method described
in ref. 9.
∑ Use of other alkyl substituted hydroquinones resulted in a similar
fluorescence enhancement.
** Reduction of the quinone–hydroquinone complex in PhCN occurs at
E1/2 = 21.26 V vs. SCE.
†† The first reversible oxidation of 1a in PhCN, 0.1 m TBAP occurs at
E1/2 = 1.01 V vs. SCE.
‡‡ Cyclic voltammograms were obtained on a EG & G Model 263 A
potentiostat using a three-electrode system. A glassy carbon electrode was
used as the working electrode. A platinum wire served as the counter
electrode, and Ag/AgCl was used as the reference electrode.
The cyclic voltammogram†† of 1a in PhCN exhibits four
well separated one-electron reductions (Fig. 3). The first two
processes corresponding to the reduction of the appended
benzoquinone are located at E1/2 = 20.51 and 20.93 V
respectively13 while the latter two processes corresponding to
the porphyrin ring reductions14 are located at E1/2 = 21.41 and
Epc = 21.83 V vs. SCE respectively at a scan rate of 0.1 V s21
.
In order to generate a neutral free-base porphyrin linked to
quinone anion radical, bulk electrolysis of 1a was carried out at
an applied potential of 20.75 V, a potential slightly more
negative than the first reduction potential of the appended
benzoquinone. After completion of the electrolysis, the fluores-
cence spectrum of the one-electron reduced product was
recorded [see Fig. 2(i)]; the emission intensity was nearly 10%
more than that observed for 1a in the presence of excess of
hydroquinone, suggesting that the interactions between the
partially or fully reduced quinone and the porphyrin macrocycle
could be responsible for additional fluorescence enhancement.
However, further studies are needed to fully understand the
mechanistic details of fluorescence enhancement in this novel
system and these studies are in progress.
References
1 A. W. Czarnik, Acc. Chem. Res., 1994, 27, 302; L. R. Sousa, B. Valeur,
A. P. de Silva, Bouas, H. Laurent, A. Ueno, T. Bell, R. Y. Tsien,
M. Kuhn, D. Masilamani and G. Krafft, in Fluorescent Chemosensors
for Ion and Molecule Recognition, ed. A. W. Czarnk, American
Chemical Society, Washington DC, 1993; R. A. Bissell, A. P. de Silva,
H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, C. P. McCoy and
K. R. A. S. Sandanayake, Top. Curr. Chem., 1993, 168, 223.
2 L. R. Sousa and J. M. Larson, J. Am. Chem. Soc., 1977, 99, 307;
P. Nanjappan and A. W. Czarnik, J. Am. Chem. Soc., 1987, 109, 1826;
M. Houston, K. Haider, K and A. W. Czarnik, J. Am. Chem. Soc., 1988,
110, 4460; A. P. de Silva and S. A. de Silva, J. Chem. Soc., Chem.
Commun., 1986, 1709; E. U. Akkaya, M. E. Houston and A. W. Czarnik,
J. Am. Chem. Soc., 1990, 112, 3590; M. E. Houston and A. W. Czarnik,
J. Am. Chem. Soc., 1990, 112, 7054; M.-Y. Chae and A. W. Czarnik,
J. Am. Chem. Soc., 1992, 114, 9704; M.-Y. Chae, X. M. Cherian and
A. W. Czarnik, J. Org. Chem., 1993, 58, 5797; H. A. Godwin and
J. M. Berg, J. Am. Chem. Soc., 1996, 118, 6514; G. K. Walkup and
G. Imperiali, J. Am. Chem. Soc., 1996, 118, 3053.
i
g
f
e
d
h
c
b
a
3 M. E. Houston, E. U. Akkaya and A. W. Czarnik, J. Am. Chem. Soc.,
1989, 111, 8735; D. H. Vance and A. W. Czarnik, J. Am. Chem. Soc.,
1994, 116, 9397.
4 J.-Y. Yoon and A. W. Czarnik, J. Am. Chem. Soc., 1992, 114, 5874;
J.-Y. Yoon and A. W. Czarnik, Bioorg. Med. Chem., 1993, 1, 267;
R. Grigg and W. D. J. A. Morbert, J. Chem. Soc., Chem. Commun.,
1992, 1298; P. Tecilla, R. P. Dixon, G. Slobodkin, D. S. Alavi and
D. H. Waldeck, J. Am. Chem. Soc., 1990, 112, 9408; A. Harriman,
Y. Kubo and J. A. Sessler, J. Am. Chem. Soc., 1992, 114, 388;
T. Hayashi, T. Miyahara, N. Hashizume and H. Ogoshi, J. Am. Chem.
Soc., 1993, 114, 2049.
λ / nm
Fig. 2 Fluorescence emission spectrum of (a) compound 1a (1 mm) in PhCN,
lex = 514 nm. Spectra (b)–(g) represent the emission spectrum of 1a on
increasing addition of hydroquinone (1 mm aliquots). Spectra (h) and (i)
represent the emission spectrum of H2TPP and the one-electron reduced
product of 1a in PhCN.
5 F. D’Souza, J. Am. Chem. Soc., 1996, 118, 923.
6 K. Wynne, S. M. LeCours, C. Galli, M. J. Therien and R. M.
Hochstrasser, J. Am. Chem. Soc., 1995, 117, 3749.
7 J. Dalton and L. R. Milgrom, J. Chem. Soc., Chem. Commun., 1979,
609; M. A. Bergkamp, J. Dalton and T. L. Netzel, J. Am. Chem. Soc.,
1982, 104, 253.
8 P. G. Seybold and M. Gouterman, J. Mol. Spectrosc., 1969, 31, 1;
D. J. Quimby and F. R. Longo, J. Am. Chem. Soc., 1975, 97, 5111.
9 A. Austin and M. Gouterman, Bioinorg. Chem., 1978, 9, 281.
10 D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 529.
30
20
10
–. 2–
P /P
–.
P/P
1– 2–
Q
/Q
I
11 R. A. Bissell, A. P. De Silva, H. Q. N. Gunaratne, P. L. M. Lynch,
G. E. M. Maguire and D. R. A. S. Sandanayake, Chem. Soc. Rev., 1992,
21, 187.
12 M. A. Slifkin and R. H. Walmsley, Spectrochim. Acta, 1970, 26A, 1237;
M. Kubinyi and G. Keresztury, Spectrochim. Acta, 1989, 45A, 421.
13 J. Q. Chambers, in The Chemistry of Quinonoid Compounds, ed. S.
Patai, Wiley, New York, 1974, ch. 14.
–.
0
Q/Q
–10
–20
0.0
–0.4
–0.8
–1.2
–1.6
–2.0
E / V (vs. Ag / AgCl)
14 K. M. Kadish, Prog. Inorg. Chem., 1986, 34, 435.
Fig. 3 Cyclic voltammogram of compound 1a in benzonitrile, 0.1 m TBAP,
scan rate = 0.1 V s21
Received, 29th October 1996; Com. 6/07384K
534
Chem. Commun., 1997