C O M M U N I C A T I O N S
Acknowledgment. We thank EPSRC for a postdoctoral fel-
lowship (J.A.W.) and a studentship (M.R.S.). Financial support for
Dr. Wisner from the Natural Sciences and Engineering Research
Council of Canada is also acknowledged. We are grateful to
Professor Michael J. Hynes (University College Galway, Ireland)
for his assistance with association constant determination.
Supporting Information Available: Full experimental details and
tables giving the crystal data and structure refinement information, bond
lengths and angles, atomic and hydrogen coordinates, and isotropic and
anisotropic displacement coordinates for 3a (PDF, CIF). This material
Figure 3. Crystal structure of the [2]-catenane. The polyether chain has
been modeled as disordered over two positions, but one of these has been
omitted for clarity. Chloride is represented as a green CPK sphere.
References
Table 1. Association Constants, M-1, for Various Anions with 2d
and 3b at 298 K in 1:1 CD3OD-CD3Cla
(1) (a) Molecular Catenanes, Rotaxanes and Knots; Sauvage, J.-P., Dietrich-
Buchecker, C., Eds.; Wiley-VCH: Germany, 1999. (b) Breault, G. A.;
Hunter, C. A.; Meyers, P. C. Tetrahedron 1999, 55, 5265-5293.
(2) (a) Pease, A. R.; Jeppeson, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.;
Heatj, J. R. Acc. Chem. Res. 2001, 34 (6), 433-444. (b) Schalley, C. A.;
Beizai, K.; Vo¨gtle, F. Acc. Chem. Res. 2001, 34 (6), 465-476.
(3) (a) Raymo, F. M.; Stoddart, J. F. Chem. ReV. 1999, 99 (7), 1643-1663.
(b) Flood, A. H.; Ramirez, R. J. A.; Deng, W.-Q.; Muller, R. P.; Goddard,
W. A.; Stoddart, J. F. Aust. J. Chem. 2004, 57, 301-322. (c) Try, A. C.;
Harding, M. M.; Hamilton, D. G.; Sanders, J. K. M. Chem. Commun.
1998, 723-724. (d) Loeb, S. J.; Wisner, J. A. Chem. Commun. 2000,
845-846.
-
host molecule
Cl-
H2PO4
-OAc
2d
K11 ) 230
K11 ) 1360
K12 ) 370
K11 ) 480
K12 ) 520
K11 ) 1500
K12 ) 345
K11 ) 230
3b
K11 ) 730
a Errors less than 10%.
(4) (a) Hunter, C. A. J. Am. Chem. Soc. 1992, 114 (13), 5303-5311. (b)
Vo¨gtle, F.; Meier, S.; Hoss, R. Angew. Chem., Int. Ed. Engl. 1992, 31,
1619. (c). Jonston, A. G.; Leigh, D. A.; Pritchard, R. J.; Deegan, M. D.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1209.
(5) (a) Blanco, M.-J.; Chambron, J.-C.; Jime´nez, M. C.; Sauvage, J.-P. Top.
Stereochem. 2003, 23, 125-173. (b) Hogg, L.; Leigh, D. A.; Lusby, P.
J.; Morelli, A.; Parsons, S.; Wong, J. K. Y. Angew. Chem., Int. Ed. 2004,
43 (10), 1218-1221. (c) McArdle, C. P.; Irwin, M. J.; Jennings, M. C.;
Puddephat, R. J. Angew. Chem., Int. Ed. 1999, 38 (22), 3376-3378. (d)
Vance, A. L.; Alcock, N. W.; Heppert, J. A.; Busch, D. H. Inorg. Chem.
1998, 37 (26), 6912-6920. (e) Hori, A.; Kumazawa, K.; Kusukawa, T.;
Chand, D. K.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. Chem. Eur. J.
2001, 7 (19), 4142-4149.
(6) (a) Anderson, S.; Anderson, H. L. Angew. Chem., Int. Ed. Engl. 1996,
35, 1956. (b) Easton, C. J.; Lincoln, S. F.; Meyer, A. G.; Noagi, H. J.
Chem. Soc., Perkin Trans. 1 1999, 2501-2506.
(7) For some examples, see: (a) Seel, C.; Vo¨gtle, F. Chem. Eur. J. 2000, 6
(1), 21-24. (b) Hu¨bner, G. M.; Gla¨ser, J.; Seel, C.; Vo¨gtle, F. Angew.
Chem., Int. Ed. 1999, 38 (3), 383-386. (c) Shukla, R.; Deetz, M. J.; Smith,
B. D. Chem. Commun. 2000, 2397-2398. (d) Ghosh, P.; Mermagen, O.;
Schalley, C. A. Chem. Commun. 2002, 2628-2629. (e) Keaveney, C. M.;
Leigh, D. A. Angew. Chem., Int. Ed. 2004, 43, 1222-1224. (f) Vilar, R.
Angew. Chem., Int. Ed. 2003, 42, 1460-1477.
(8) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486-516.
(9) (a) Wisner, J. A.; Beer, P. D.; Drew, M. G. B. Angew. Chem., Int. Ed.
2001, 40, 3606-3609. (b) Wisner, J. A.; Beer, P. D.; Berry, N. G.;
Tomapatanaget, B. PNAS 2002, 99 (8), 4983-4986. (b) Curiel, D.; Beer,
P. D.; Paul, R. L.; Cowley, A.; Sambrook, M. R.; Szemes, F. Chem.
Commun. 2004, 1162-1163.
(10) An anion-binding [2]-catenane structure has been reported, but no evidence
for anion templation was observed: Andrievsky, A.; Ahuis, F.; Sessler,
J. L.; Vo¨gtle, F.; Gudat, D.; Moini, M. J. Am. Chem. Soc. 1998, 120 (37),
9712-9713.
(11) Examples of the use of ring-closing metathesis in the formation of
catenanes include: (a) Mobian, P.; Kern, J.-M.; Sauvage, J.-P. J Am. Chem.
Soc. 2003, 125 (8), 2016-2017. (b) Leigh, D. A.; Lusby, P. J.; Teat, S.
J.; Wilson, A. J. Wong, J. K. Y. Angew. Chem., Int. Ed. 2001, 40 (8),
1538-1543.
(12) Hynes, M. J. J. Chem. Soc., Dalton Trans. 1993, 311-312.
(13) Examples include: (a) Andrievsky, A.; Ahuis, F.; Sessler, J. L.; Vo¨gtle,
F.; Gudat, D.; Moini, M. J. Am. Chem. Soc. 1998, 120 (37), 9712-9713.
(b) Deetz, M. J.; Shukla, R.; Smith, B. D. Tetrahedron 2002, 58, 799-
805. (c) Kwan, P. H.; MacLachlan, M. J.; Swager, T. M. J. Am. Chem.
Soc. 2004, 126, 8638-8639. (d) Thordarson, P.; Nolte, R. J. M.; Rowan,
A. E. Aust. J. Chem. 2004, 57, 323-327. (e) Wisner, J. A.; Beer, P. D.;
Drew, M. G. B.; Sambrook, M. R. J. Am. Chem. Soc. 2002, 124 (42),
12469-12476.
in a 1:1 CD3OD-CD3Cl solvent mixture, monitoring the aromatic
protons by 1H NMR. WinEQNMR12 analysis of the respective
titration curves gave association constant values shown in Table 1.
The pyridinium allyl component, 2d, displays a strong affinity for
acetate and dihydrogen phosphate, with only weak chloride binding
being observed. It would appear from these results that the basicity
of the oxoanions is the dominant factor in dictating the strength of
anion association with 2d.
By contrast, titrations with the [2]catenane, 3b, give a reverse
binding trend: Cl- > H2PO4- > -OAc. The binding of chloride is
enhanced significantly, whereas the binding of the oxoanions is
much weaker. These dramatic changes in anion selectivity are
postulated to be the result of the creation of a unique, topologically
constrained catenane binding pocket formed by the two amide clefts
of 3b. Large anions such as dihydrogen phosphate and acetate must
either bind outside of the cavity or force a large, and unfavorable,
conformational change upon the catenane. In both cases, it is
unlikely that a full complement of hydrogen bond donors will be
available to complex the oxo anionic guest. Association stoichi-
ometries also appear to be affected, with only a 1:1 binding ratio
observed for acetate as opposed to a mixed 1:1 and 1:2 with the
pyridinium allyl precursor, 2d. The reason for the cooperative
-
binding of a second H2PO4 guest species by the catenane is still
undetermined.
In conclusion, we have described the first [2]- and [3]catenane
structures to be synthesized using anion templation. The choice of
anion has been demonstrated to be crucial to the assembly process,
with only chloride producing the [2]catenane in acceptable yield.
Anion binding by the pyridinium component is greatly influenced
by catenation, leading to dramatic changes in anion selectivity
trends. The use of rotaxane and catenane cavities as binding
domains remains underexploited,13 and we are currently pursuing
a greater range of mechanically interlocked species with desirable
anion binding properties in our laboratories.
JA045080B
9
J. AM. CHEM. SOC. VOL. 126, NO. 47, 2004 15365