J . Org. Chem. 1998, 63, 5235-5239
5235
Generally, the reaction is effected by treatment of
carbonyl compounds with an appropriate metal reagent
and/or metal complex to give rise to the corresponding
coupled product. A number of different types of metal
reagents have been used to carry out the pinacol reaction.
For instance, the reaction with various low-valent metal
complexes of Al,5 Ce,6 Fe,7 Mg,8 Nb,9 Sm,10 Si,11 Ti,12 V,13
Yb,14 Zr,15 and main group organometallic hydrides (Bu3-
SnH, Ph3SnH, Bu3GeH, and (TMS)3SiH)16 afforded inter-
or intramolecular coupling products of carbonyls.
New Rea gen t for Red u ctive Cou p lin g of
Ca r bon yl a n d Im in e Com p ou n d s: High ly
Rea ctive Ma n ga n ese-Med ia ted P in a col
Cou p lin g of Ar yl Ald eh yd es, Ar yl Keton es,
a n d Ald im in es
Reuben D. Rieke* and Seung-Hoi Kim
Department of Chemistry, University of NebraskasLincoln,
Lincoln, Nebraska 68588-0304
The coupling products can have two newly formed
stereocenters. As a consequence, efficient reaction condi-
tions have been required to control the stereochemistry
of the 1,2-diols. Recent efforts have focused on the
development of new reagents and reaction systems to
improve the reactivity of the reagents and diasteroselec-
tivity of the products. In addition, functional group
tolerance has been a challenge for reductive coupling of
carbonyl compounds using the reaction systems men-
tioned above, and many successful results have been
reported.
In 1984, Lukehart17 reported a formal reductive cou-
pling of mangana-â-diketonato complexes to give carbon-
carbon bond formation. Manganese complexes also have
been used as a good single-electron source in oxidative
free-radical cyclizations.18 On the basis of these findings,
we postulated that our active manganese might be a good
single-electron donor and, therefore, be utilized for pi-
nacol coupling.
Received October 21, 1997
In tr od u ction
One of the most powerful methods for constructing
carbon-carbon bond is the reductive coupling of carbonyl
compounds giving olefins and/or 1,2-diols.1 Of these
methods, the pinacol coupling,2 which was described in
1859, is still a useful tool for the synthesis of vicinal diols.
The corresponding products of this reaction can be used
as intermediates for the preparation of ketones and
alkenes.3 More importantly, this methodology has been
applied to the synthesis of biologically active natural
compounds.4
(1) For a review, see: (a) House, H. O. Modern Synthetic Reactions,
2nd ed; W. A. Benjamin: New York, 1972; p 167. (b) McMurry, J . E.
Chem. Rev. 1989, 89, 1513. (c) Khan, B. E.; Rieke, R. D. Chem. Rev.
1988. 88, 733.
(2) (a) Fittig, R. J ustus Liebigs Ann. Chem. 1859, 110, 23. For
comprehensive reviews, see: (b) Wirth, T. Angew. Chem., Int. Ed. Engl.
1996, 35, 61. (c) Dushin, R. G. In Comprehensive Organometallic
Chemistry II; Hegedus, L. S., Ed.; Pergamon: Oxford, 1995; Vol. 12,
pp 1071-1095. (d) Furstner, A. Angew. Chem., Int. Ed. Engl. 1993,
32, 164. (e) Robertson, G. M. In Comprehensive Organic Synthesis;
Trost, B. M., Ed.; Pergamon: New York, 1991; Vol 3, pp 563-611.
(3) For example, see: Masamune, S.; Choy, W. Aldrichim. Acta 1982,
15, 47.
(4) (a) Chiaro, J . L.; Cabri, W.; Hanessian, S. Tetrahedron Lett. 1991,
32, 1125. (b) Guidot, J . P.; Le Gall, T.; Mioskowsk, C. Tetrahedron Lett.
1994, 35, 6671. (c) Corey, E. J .; Danheiser, R. L.; Chandrasekaran, S.;
Siret, P.; Keck, G. E.; Gras, J . J . Am. Chem. Soc. 1978, 100, 8031. (d)
Swindell, C. S.; Fan, W.; Klimko, P. G. Tetrahedron Lett. 1994, 35,
4959. (e) Nicolaou, K. C.; Yang, Z.; Liu, J . J .; Ueno, H.; Nantermet, P.
G.; Guy, R. K.; Claiborne, C. F.; Renaud, J .; Couladouros, E. A.;
Paulvannan, K.; Sorensen, E. J . Nature 1994, 367, 630.
During the course of our investigation on active metals,
we have found that treatment of aryl aldehydes and aryl
ketones with active manganese (Mn*) prepared via the
Rieke method gave the corresponding pinacolic coupling
product (Tables 1 and 2). As shown in Scheme 1, the
reaction of aldimines with this active manganese also
afforded the corresponding coupling products, vicinal
diamines. Due to the potential utility of vicinal diamines
(11) Hiyama, T.; Obayashi, M.; Mori, I.; Nozaki, H. J . Org. Chem.
1983, 48, 912.
(12) (a) Swindell, C. S.; Fan, W.; Klimko, P. G. Tetrahedron Lett.
1994, 35, 4959. (b) McMurry, J . E.; Siemers, N. O. Tetrahedron Lett.
1994, 35, 4505. (c) Nicolaou, K. C.; Yang, Z.; Sorenson, E. J .; Nakada,
M. J . Chem. Soc., Chem. Commun. 1993, 1024. (d) McMurry, J . E.;
Siemers, N. O. Tetrahedron Lett. 1993, 34, 7891. (e) Swindell, C. S.;
Chandler, M. C.; Heerding, J . M.; Klimko, P. G.; Rahman, L. T.;
Raman, J . V.; Venkataraman, H. Tetrahedron Lett. 1993, 34, 7002. (f)
Davey, A. E.; Schaeffer, M. J .; Tayler, R. J . J . Chem. Soc., Perkin Trans.
1, 1992, 2657. (g) McMurry, J . E.; Dushin, R. G. J . Am. Chem. Soc.
1990, 112, 6942. (h) McMurry, J . E.; Rico, J . G.; Shih, Y.-N. Tetrahe-
dron Lett. 1989, 30, 1173. (i) Pierrot, M.; Pons, J .-M.; Santelli, M.
Tetrahedron Lett. 1988, 29, 5925. (j) Handa, Y.; Inanaga, J . Tetrahe-
dron Lett. 1987, 28, 5717. (k) Suzuki, H.; Manabe, H.; Enokiya, R.;
Hanazaki, Y. Chem. Lett. 1986, 1339. (l) Clerici, A.; Porta, O. J . Org.
Chem. 1983, 48, 1690. (m) Clerici, A.; Porta, O. Tetrahedron Lett. 1982,
23, 3517. (n) Clerici, A.; Porta, O. Tetrahedron Lett. 1982, 38, 1293.
(o) Mukaiyama, T.; Sato, T.; Hanna, J . Chem. Lett. 1973, 1041.
(13) (a) Hirao, T.; Hasegawa, T.; Muguruma, Y.; Ikeda, I. J . Org.
Chem. 1996, 61, 366. (b) Konradi, A. W.; Kemp, S. J .; Pedersen, S. F.
J . Am. Chem. Soc. 1994, 116, 1316. (c) Raw, A. S.; Pedersen, S. F. J .
Org. Chem. 1991, 56, 830.
(5) Schreibmann, A. A. Tetradedron Lett. 1970, 4217.
(6) Imamoto, T.; Kusumoto, T.; Hatanaka, Y.; Yokoyama, M. Tet-
rahedron Lett. 1982, 1353.
(7) (a) Ito, K.; Nakanishi, S.; Otsuji, Y. Chem. Lett. 1980, 1141. (b)
Inoue, H.; Suzuki, M.; Fujimoto, N. J . Org. Chem. 1979, 44, 1722. (c)
Mukaiyama, T.; Sato, T.; Hana, J . Chem. Lett. 1973, 1041.
(8) (a) Furstner, A.; Csuk, R,; Rohrer, C.; Weidmann, H. J . Chem.
Soc., Perkin Trans. 1 1988, 1729. (b) Csuk, R.; Furstner, A.; Weidmann,
H. J . Chem. Soc., Chem. Commun. 1986, 1802. (c) Rausch, M. D.;
McEwen, W. E.; Kleinberg, J . Chem. Rev. 1957, 57, 7, 417 (d) Adams,
E. W. Organic Synthesis; Wiley: New York, 1941; Collect. Vol. I, p
459.
(9) (a) Kammermeier, B.; Beck, G.; J acobi, D.; J endralla, H. Angew.
Chem., Int. Ed. Engl. 1994, 33, 685. (b) Szymoniak, J .; Besancon, J .;
Moise, C. Tetrahedron 1994, 50, 2841. (c) Szymoniak, J .; Besancon,
J .; Moise, C. Tetrahedron 1992, 48, 3867.
(10) Nomura, R.; Matsuno, T.; Endo, T. J . Am. Chem. Soc. 1996,
118, 11666. (b) Anies, C.; Pancrazi, A.; Lallemand, J .-Y.; Prange, T.
Tetrahedron Lett. 1994, 35, 7771. (c) Chiara, J . L.; Martin-Lomas, M.
Tetrahedron Lett. 1994, 35, 2969. (d) Lebrun, A.; Namy, J .-L.; Kagan,
H. B. Tetrahedron Lett. 1993, 34, 2311. (e) Arseniyadis, S.; Yashunsky,
D. V.; Freitas, R. P.; Dorado, M. M.; Toromanoff, E.; Potier, P.
Tetrahedron Lett. 1993, 34, 1137. (f) Umenishi, J .; Masuda, S.;
Wakabayashi, S. Tetrahedron Lett. 1991, 32, 5097. (g) Chiara, J . L.;
Cabri, W.; Hanessian, S. Tetrahedron Lett. 1991, 32, 1125. (h)
Molander, G. A.; Kenny, C. J . Am. Chem. Soc. 1989, 111, 8236. (i)
Molander, G. A.; Kenny, C. J . Org. Chem. 1988, 53, 2134. (j) Namy, J .
L.; Souppe, J .; Kagan, H. B. Tetrahedron Lett. 1983, 24, 765.
(14) (a) Hou, Z.; Takamine, K.; Fuziware, Y.; Taniguchi, H. Chem.
Lett. 1987, 2061. (b) Hou, Z.; Takamine, K.; Aoki, O.; Shirashi, H.;
Fujiwara, Y.; Taniguchi, H. J . Org. Chem. 1988, 53, 6077.
(15) Askham, F. R.; Carroll, K. M. J . Org. Chem. 1993, 58, 7328.
(16) (a) Hays, D. S.; Fu, G. C. J . Am. Chem. Soc. 1995, 117, 7283.
(b) For a review, see: Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188.
(17) Lenhert, P. G.; Lukehart, C. M.; Srinivasan, K. J . Am. Chem.
Soc. 1984, 106, 124.
(18) Snider, B. B. Chem. Rev. 1996, 96, 339 and references therein.
S0022-3263(97)01942-7 CCC: $15.00 © 1998 American Chemical Society
Published on Web 07/07/1998