COMMUNICATIONS
Leonardo Degennaro et al.
60 s or longer while being quenched with NH4Cl (saturated
aqueous solution, 1 mL). The reaction mixture was poured
into water (10 mL) and extracted with Et2O (3ꢁ10 mL).
The combined organic layers were dried (Na2SO4), filtered
and concentrated under vacuum. Flash chromatography on
the crude afforded the chloromethyl-substituted products
2a–r.
[8] a) V. Pace, W. Holzer, G. Verniest, A. R. Alcꢄntara, N.
De Kimpe, Adv. Synth. Catal. 2013, 355, 919; b) V.
Pace, L. Castoldi, W. Holzer, J. Org. Chem. 2013, 78,
7764.
[9] V. Pace, L. Castoldi, W. Holzer, Chem. Commun. 2013,
49, 8883.
[10] a) J. B. Sweeney, in: Aziridines and Epoxides In Organ-
ic Synthesis, (Ed.: A. Yudin), Wiley-VCH, Weinheim,
2006, pp 117–144; b) V. Capriati, S. Florio, R. Luisi,
Chem. Rev. 2008, 108, 1918; c) L. Degennaro, P. Trin-
chera, R. Luisi, Chem. Rev. 2014, DOI: 10.1021/
cr400553c.
Acknowledgements
We thank National Project “FIRB - Futuro in Ricerca”
(code: CINECA RBFR083M5N), Regional Project “Reti di
Laboratori Pubblici di Ricerca” (Project. Code 20), “Labora-
torio SISTEMA” code PONa300369 financed by Italian
MIUR, and Interuniversity Consortium CINMPIS for finan-
cial support. We are grateful to Prof. J.-i. Yoshida and Prof.
A. Nagaki for their precious help in the beginning of this re-
search theme.
[11] An isolated work reports the generation and in-situ
trapping of CML at À158C under sonochemical condi-
tions by using lithium metal, see: C. Einhorn, C. Alla-
vena, J.-L. Luche, J. Chem. Soc. Chem. Commun. 1988,
333.
[12] A tactic to prolong the life-time of carbenoids consists
in the introduction of anion-stabilizing groups, for ex-
amples, see: a) S. Florio, V. Capriati, R. Luisi, Curr.
Org. Chem. 2004, 8, 1529; b) X. Sun, P. R. Blakemore,
Chem. Eur. J. 2013, 19, 16342, and references cited
therein.
[13] Examples of “stabilized” chloro carbenoids stable at
room temperature have been recently reported, see: C.
Kupper, S. Molitor, V. H. Gessner, Organometallics
2014, 33, 347, and references cited therein.
[14] a) A. Nagaki, J. Yoshida, Microreactor Technology in
Lithium Chemistry, in: Lithium Compounds in Organic
Synthesis from Fundamentals to Applications, (Eds.: R.
Luisi, V. Capriati) Wiley-VCH, Weinheim, 2014, p 491;
b) H. Kim, A. Nagaki, J.-i. Yoshida, Nat. Commun.
2011, 2, 264.
[15] a) J.-i. Yoshida, Flash Chemistry. Fast Organic Synthesis
in Microsystems, Wiley-Blackwell, 2008; b) J. Yoshida,
Chem. Commun. 2005, 4509; c) J. Yoshida, A. Nagaki,
T. Yamada, Chem. Eur. J. 2008, 14, 7450; d) J. Yoshida,
Chem. Rec. 2010, 10, 332; e) J.-i. Yoshida, Y. Takahashi,
A. Nagaki, Chem. Commun. 2013, 49, 9896.
[16] For selected reviews and books see: a) W. Ehrfeld, V.
Hessel, H. Lowe, in: Microreactors, Wiley-VCH, Wein-
heim, 2000; b) V. Hessel, S. Hardt, H. Lowe, in: Chemi-
cal Micro Process Engineering, Wiley-VCH, Weinheim,
2004; c) T. Wirth, in: Microreactors in Organic Synthe-
sis and Catalysis, Wiley-VCH, Weinheim, 2nd edn.,
2013; d) R. L. Hartman, J. P. McMullen, K. F. Jensen,
Angew. Chem. 2011, 123, 7642; Angew. Chem. Int. Ed.
2011, 50, 7502; e) J. Wegner, S. Ceylan, A. Kirschning,
Adv. Synth. Catal. 2012, 354, 17; f) C. Wiles, P. Watts,
Green Chem. 2012, 14, 38.
References
[1] a) M. Braun, in: The Chemistry of Organolithium Com-
pounds, (Eds.: Z. Rappoport, I. Marek), John Wiley
and Sons, Chichester, 2004; b) H. Siegel, Top. Curr.
Chem. 1982, 106, 55–78; c) H. Hermann, J. C. W. Loh-
renz, A. Kꢂhn, G. Boche, Tetrahedron 2000, 56, 4109–
4115; d) G. Boche, J. C. W. Lohrenz, Chem. Rev. 2001,
101, 697–756; e) V. Pace, Aust. J. Chem. 2014, 67, 311.
[2] G. Kçbrich, A. Akhtar, F. Ansari, W. E. Breckoff, H.
Bꢂttner, W. Drischel, R. H. Fischer, K. Flory, H. Frçh-
lich, W. Goyert, H. Heinemann, I. Hornke, H. R.
Merkle, H. Trapp, W. Zꢂndorf, Angew. Chem. 1967, 79,
15; Angew. Chem. Int. Ed. Engl. 1967, 6, 41.
[3] a) K. M. Sadhu, D. S. Matteson, Tetrahedron Lett. 1986,
27, 795; b) T. J. Michnick, D. S. Matteson, Synlett 1991,
631; c) D. C. Kapeller, F. Hammerschmidt, J. Am.
Chem. Soc. 2008, 130, 2329.
[4] a) J. M. Concellꢃn, H. Cuervo, R. Fernꢄndez-Fano, Tet-
rahedron 2001, 57, 8983; b) V. Pace, L. Castoldi, W.
Holzer, Adv. Synth. Catal. 2014, 356, 1761; c) J. Bar-
luenga, L. Llavona, P. L. Bernad, J. M. Concellꢃn, Tet-
rahedron Lett. 1993, 34, 3173; d) J. Barluenga, B. Bara-
gaÇa, J. M. Concellꢃn, J. Org. Chem. 1999, 64, 2843.
[5] a) J. M. Concellꢃn, H. Rodrꢅguez-Solla, C. Simal, Org.
Lett. 2008, 10, 4457; b) J. M. Concellꢃn, H. Rodrꢅguez-
Solla, P. L. Bernad, C. Simal, J. Org. Chem. 2009, 74,
2452; c) J. A. Bull, T. Boultwood, T. A. Taylor, Chem.
Commun. 2012, 48, 12246; d) T. Boultwood, D. P.
Affron, A. D. Trowbridge, J. A. Bull, J. Org. Chem.
2013, 78, 6632.
[17] a) A. Giovine, B. Musio, L. Degennaro, A. Falcicchio,
A. Nagaki, J. Yoshida, R. Luisi, Chem. Eur. J. 2013, 19,
1872; b) L. Carroccia, B. Musio, L. Degennaro, G. Ro-
manazzi, R. Luisi, J. Flow Chem. 2013, 3, 29; c) V.
Pace, R. Luisi, ChemCatChem 2014, 6, 1516.
[6] J. Barluenga, J. L. Fernandez-Simon, J. M. Concellon,
M. Yus, J. Chem. Soc. Perkin Trans. 1 1989, 77.
[7] a) J. Barluenga, B. BaragaÇa, A. Alonso, J. M. Concel-
lꢃn, J. Chem. Soc. Chem. Commun. 1994, 969; b) J. Bar-
luenga, B. BaragaÇa, J. M. Concellꢃn, J. Org. Chem.
1995, 60, 6696; c) J. Barluenga, B. BaragaÇa, J. M. Con-
cellꢃn, A. PiÇera-Nicolꢄs, M. R. Dꢅaz, S. Garcꢅa-
Granda, J. Org. Chem. 1999, 64, 5048; d) C. J. Kowal-
ski, R. E. Reddy, J. Org. Chem. 1992, 57, 7194.
[18] All the attempts for the trapping of CML at 08C failed.
We were aware that at higher temperature the expect-
ed chlorohydrin could cyclize giving the corresponding
1
epoxide. However, H NMR analysis of the crude reac-
tion mixture revealed the presence of benzaldehyde
and traces of adduct 3.
6
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 0000, 000, 0 – 0
ÝÝ
These are not the final page numbers!