Published on Web 10/13/2004
Palladium- and Copper-Catalyzed Synthesis of Medium- and
Large-Sized Ring-Fused Dihydroazaphenanthrenes and
1,4-Benzodiazepine-2,5-diones. Control of Reaction Pathway
by Metal-Switching
Guylaine Cuny, Miche`le Bois-Choussy, and Jieping Zhu*
Contribution from the Institut de Chimie des Substances Naturelles, CNRS,
91198 Gif-sur-YVette Cedex, France
Received April 30, 2004; E-mail: zhu@icsn.cnrs-gif.fr
Abstract: Methods for the synthesis of dihydroazaphenanthrene fused to macrocycles (2) and medium-
ring heterocycles (4), as well as 1,4-benzodiazepine-2,5-diones (5), are developed. A distinctly different
catalytic property of palladium and copper catalysts was uncovered that leads to the development of a
divergent synthesis of two different heterocyclic scaffolds from the same starting materials, simply by metal-
switching. Thus, starting from linear amide 3, palladium acetate triggers a domino intramolecular N-arylation/
C-H activation/aryl-aryl bond-forming process to provide 4, while copper iodide promotes only the
intramolecular N-arylation reaction leading to 5. In combination with the Ugi multicomponent reaction (Ugi-
4CR) for the preparation of the linear amides, a two-step synthesis of either the 5,6-dihydro-8H-5,7a-
diazacyclohepta[jk]phenanthrene-4,7-dione (4) or 1,4-benzodiazepine-2,5-diones (5), by appropriate choice
of metal catalyst, is subsequently developed from very simple starting materials.
Introduction
nitrogen substrates, including amines, amides, nitrogen hetero-
cycles, and R- and â-amino acids can now be arylated under
mild catalytic conditions.6
Following the pioneering contributions by the groups of
Buchwald1 and Hartwig,2 there has been a surge of interest in
the palladium-catalyzed amination/amidation of aryl halides and
pseudo-halides during the past 10 years. By appropriate
combination of palladium source, ligand, base, and solvent, this
coupling reaction can now be realized under mild conditions
for a variety of unactivated aromatic halides/pseudo-halides and
a range of nucleophiles.3 In comparison to the palladium-
catalyzed amination/amidation reactions, the copper-mediated
version, best known as the Ullmann reaction (N-arylation of
amine) and the Goldberg reaction (N-arylation of amides), has
been known for a century.4 The harsh reaction conditions, in
particular high temperatures, and the necessity to use stoichio-
metric amounts of the copper limited, nevertheless, the applica-
tion scope of these two otherwise powerful reactions. However,
a number of catalytic systems have now been developed since
Ma’s seminal contribution dealing with the CuI-catalyzed
N-arylation of amino acids with aryl halides.5 An array of
Both palladium- and copper-catalyzed intramolecular N-
arylations leading to five-, six-, and to a lesser extent, seven-
membered rings have been investigated, and various efficient
catalytic systems have been developed.7-10 On the other hand,
attempts to access medium-sized and macrocyclic ring systems
by direct N-arylation were, to the best of our knowledge,
unsuccessful. This is unfortunate since these medium-sized rings
and macrocycles have found numerous applications in drug
development, materials science, and supramolecular chemistry
(6) For reviews: (a) Ley, S.; Thomas, A. W. Angew. Chem., Int. Ed. 2003,
42, 5400-5449. (b) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428-
2439.
(7) Palladium-catalyzed: (a) Wolfe, J. P.; Rennels, R. A.; Buchwald, S. L.
Tetrahedron 1996, 52, 7525-7546. (b) Wagaw, S.; Rennels, R. A.;
Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 8451-8458. (c) Yang, B.
H.; Buchwald, S. L. Org. Lett. 1999, 1, 35-37. (d) Abouabdellah, A.; Dodd,
R. H. Tetrahedron Lett. 1998, 39, 2119-2122. (e) Song, J. J.; Yee, N. K.
Org. Lett. 2000, 2, 519-521. (f) Brown, J. A. Tetrahedron Lett. 2000, 41,
1623-1626. (g) Qadir, M.; Priestley, R. E.; Rising, T. W. D. F.; Gelbrich,
T.; Coles, S. J.; Hursthouse, M. B.; Sheldrake, P. W.; Whittall, N.; Hii, K.
K. Tetrahedron Lett. 2003, 44, 3675-3678. (h) Evindar, G.; Batey, R. A.
Org. Lett. 2003, 5, 133-136. (i) Margolis, B. J.; Swidorski, J. J.; Rogers,
B. N. J. Org. Chem. 2003, 68, 644-647. (j) Nozaki, K.; Takahashi, K.;
Nakano, K.; Hiyama, T.; Tang, H.-Z.; Fujiki, M.; Yamaguchi, S.; Tamao,
K. Angew. Chem., Int. Ed. 2003, 42, 2051-2053. (k) Brain, C. T.; Steer,
J. T. J. Org. Chem. 2003, 68, 6814-6816.
(8) Copper-catalyzed: (a) Ma, D.; Xia, C. Org. Lett. 2001, 2, 2583-2586. (b)
Yamada, K.; Kubo, T.; Tokuyama, H.; Fukuyama, T. Synlett 2002, 231-
234.
(9) Nickel catalyzed: Omar-Amrani, R.; Thomas, A.; Brenner, E.; Schneider,
R.; Fort, Y. Org. Lett. 2003, 5, 2311-2314. Iridium-catalyzed oxidative
cyclization of amino alcohols: Fujita, K.-I.; Yamamoto, K.; Yamaguchi,
R. Org. Lett. 2002, 4, 2691-2694.
(10) For an elegant application in natural product synthesis, see: He, F.; Foxman,
B. M.; Snider, B. B. J. Am. Chem. Soc. 1998, 120, 6417-6418.
(1) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. F. Acc. Chem.
Res. 1998, 31, 805-818. (b) Yang, B. H.; Buchwald, S. L. J. Organomet.
Chem. 1999, 576, 125-146.
(2) (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046-2067. (b) Hartwig,
J. F. In Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH: Wein-
heim, 2000; Chapter 7.
(3) (a) Prim, D.; Campagne, J. M.; Joseph, D.; Andrioletti, B. Tetrahedron
2002, 58, 2041-2075. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed.
2002, 41, 4176-4211. (c) Belfield, A. J.; Brown, G. R.; Foubister, A. J.
Tetrahedron 1999, 55, 11399-11428.
(4) Lindley, J. Tetrahedron 1984, 40, 1433-1456.
(5) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120,
12459-12467.
9
10.1021/ja047472o CCC: $27.50 © 2004 American Chemical Society
J. AM. CHEM. SOC. 2004, 126, 14475-14484
14475