[Au(diphos)2][SbF6] [diphos = dpephos (4), xantphos (5),
monochromated Mo-Ka radiation. The crystal stability was
monitored and there was no significant decay (±1%). Data
were collected at low temperature (ca. 153 K). Omega–phi scans
were employed for data collection and Lorentz and polarisation
corrections were applied. The structures were solved by
direct methods and all non-hydrogen atoms were refined
with anisotropic atomic displacement parameters. Hydrogen
atom positions were located from a Fourier difference map
and refined with isotropic atomic displacement parameters
for dpephos. Hydrogen atoms for 5 were added at idealised
positions, subsequent refinement uses a riding model with
atomic displacement parameters fixed at 1.2Ueq of the atom to
which they are attached (1.5Ueq for methyl groups). The function
minimised for wR2 was ∑[w(|Fo|2 − |Fc|2)] with reflection weights
w−1 = [r2|Fo|2 + (g1P)2 + g2P] where P = [max |Fo|2 + 2|Fc|2]/3 for
all F2 and the function minimised for R1 was R[w(|Fo| − |Fc|)].
The SAINT34 and SHELXTL35 PC packages were used for data
collection, reduction, structure solution and refinement.
CCDC reference numbers 244462–244466.
dbfphos (6)]. To a suspension of 1, 2 or 3 (0.075 mmol) in
chloroform (15 cm3) was added the corresponding diphosphine
(0.250 mmol). After stirring the resulting mixture for 0.5 h, a
solution of NaSbF6 (0.039 g, 0.149 mmol) in acetone (ca. 1 cm3)
was added. After 0.5 h, the solvent was evaporated to dryness
and dichloromethane (ca. 5 cm3) added to the resulting white
residue. The suspension was filtered over Celite and the filtrate
concentrated to dryness to give the product as a white (4, 5) or
a yellow (6) solid. Complex 5 was washed with acetone–diethyl
ether (1:15, ca. 5 cm3).
4 (0.08 g, 72%) (Found: C, 57.62; H, 3.80. C72H56AuF6O2P4Sb
requires C, 57.27; H, 3.74%); dH (300 MHz) 7.91–6.65 (52 H, m,
Ph), 6.28 [4 H, d, J(HH or HP) = 8 Hz, H(3)]; dP (121.5 MHz)
18.2 (s); m/z 1274 (M+).
5 (0.07 g, 58%) (Found: C, 58.74; H, 4.09. C78H64AuF6O2P4Sb
requires C, 58.92; H, 4.06%); dH (500 MHz, 300 K) 7.51–6.73
(52 H, m, Ph), 1.59 (12 H, br s, 4 CH3), (213 K) 7.55–6.15 (52 H,
m, Ph), 1.83 (6 H, s, 2 CH3) 0.88 (6 H, s, 2 CH3); dP (202.5 MHz,
300 K) 5.8 (br s), (213 K) 5.5, 0.5 [4 P, AABB, J(AA) =
22.2 Hz, J(AB) = 24.2 Hz, J(AB) = 13.3 Hz, J(BB) = 18.5 Hz];
m/z 1354 (M+).
lographic data in CIF or other electronic format.
6 (0.11 g, 98%) (Found: C, 58.15; H, 3.87. C72H52AuF6O2P4Sb
requires C, 57.43; H, 3.48%); dH (500 MHz) 8.06 [4 H, d,
3J(HH) = 8 Hz, H(1,9)], 7.35–7.12 (44 H, m, Ph), 6.99 [4 H,
apparent t, J(HH or HP) = 8 Hz, H(3,7)]; dP (121.5 MHz,
300 K) 6.5 (br s), (202.5 MHz, 213 K) 34.1 (br s), −19.8 (br s);
m/z 1270 (M+).
Syntheses
[(AuCl)2(l-diphos)]·CH2Cl2 [diphos = dpephos (1), xantphos
(2), dbfphos (3)]. To
a solution of the corresponding
diphosphine [0.4 g, 0.742 mmol (1), 0.3 g, 0.519 mmol (2); 0.4 g,
0.743 mmol (3)] in 15 cm3 of dichloromethane, two equivalents
of [AuCl(tht)] were added. The resulting solution was stirred at
room temperature under an atmosphere of dinitrogen for 2 h,
and then concentrated to dryness. To the residue, a mixture of
acetone–ether (1:15, ca. 15 cm3) was added, and the resulting
suspension filtered. The resulting white solid was air-dried.
1 (0.58 g, 72%) (Found: C, 40.63; H, 2.40. C37H30Au2Cl4OP2
requires C, 40.83; H, 2.78%); mmax/cm−1 (AuCl) 320, 311
(Nujol); dH (300 MHz) 7.60–7.09 (26 H, m, Ph), 6.71 [2 H, ddd,
Acknowledgements
We are grateful to the EPSRC and the McClay Trust for their
financial support, including PhD grants for H. de la R. and
A. P.-A., respectively.
References
3J(HH) = 7.7 Hz, J(HH) = 1.5 Hz, J(HP) = 11.9 Hz, H(3)],
5.30 (2 H, s, CH2Cl2); dP (121.5 MHz) 21.7 (s); dC (75.4 MHz)
158.9 [2 C, d, J(CP) = 6 Hz, CO], 135.0 [4 C, d, J(CP) = 14 Hz,
o-C6H5P], 134.2 (2 C, s, C6H4OP), 133.9 [2 C, d, J(CP) = 6 Hz
C6H4OP], 133.1 [4 C, d, J(CP) = 14 Hz, o-C6H5P], 132.1 (2 C,
s, p-C6H5P), 131.1 (2 C, s, p-C6H5P), 129.7 [4 C, d, J(CP) =
12 Hz, m-C6H5P], 129.2 [4 C, d, J(CP) = 12 Hz, m-C6H5P],
128.3 [2 C, d, 1J(CP) = 64 Hz, i-C6H5P], 127.0 [2 C, d, 1J(CP) =
65 Hz, i-C6H5P], 125.1 [2 C, d, J(CP) = 9 Hz, C6H4OP], 120.2
[2 C, d, J(CP) = 5 Hz, C6H4OP], 119.1 [2 C, d, 1J(CP) = 62 Hz,
i-C6H4OP], 53.4 (s, CH2Cl2).
4
3
1 V. W.-W Yam and K. K.-W. Lo, Chem. Soc. Rev., 1999, 28,
323; V. W.-W Yam, C.-L. Chan, C.-K. Li and K. M.-C. Wong,
Coord. Chem. Rev., 2001, 216–217, 173; W. E. van Zyl, J. M.
López de Luzuriaga and J. P. Fackler, Jr., J. Mol. Struct., 2000,
516, 99; P. Li, B. Ahrens, K.-H. Choi, M. S. Khan, P. R. Raithby,
P. J. Wilson and W.-Y. Wong, CrystEngComm, 2002, 4, 405.
2 Z. Assefa, B. G. McBurnett, R. J. Staples, J. P. Fackler Jr.,
B. Assmann, K. Angermaier and H. Schmidbaur, Inorg. Chem.,
1995, 34, 75; J. C. Vickery, M. M. Olmstead, E. Y. Fung and
A. L. Balch, Angew. Chem., Int. Ed. Eng., 1997, 36, 1179; S. S. Tang,
C.-P. Chang, I. J. B. Lin, L.-S. Liou and J.-C. Wang, Inorg. Chem.,
1997, 36, 2294; B.-C. Tzeng, C.-K. Chan, K.-K. Cheung, C.-M. Che
and S.-M. Peng, Chem. Commun., 1997, 135.
3 W. B. Jones, J. Yan, R. Narayanaswamy, M. A. Young, R. C. Elder,
A. E. Bruce and M. R. M. Bruce, Inorg. Chem., 1995, 34, 1996.
4 J. M. Forward, J. P. Fackler, Jr. and Z. Assefa, in Optoelectronic
Properties of Inorganic Compounds, ed. M. Roundhill and J. P.
Fackler, Jr., Plenum Press, New York, 1999, ch. 6, pp. 195–229, and
references therein.
5 H. Xiao, Y.-X. Weng, W.-T. Wong, T. C. W. Mak and C.-M. Che, J.
Chem. Soc., Dalton Trans., 1997, 221.
6 A. Vogler and H. Kunkely, Coord. Chem. Rev., 2001, 219–221, 489.
7 M. Kranenburg, Y. E. M. van der Burgt, P. C. Kramer and
P. W. N. M. van Leeuwen, Organometallics, 1995, 14, 3081.
8 M. W. Haenel, D. Jakubik, E. Rothenberger and G. Schroth, Chem.
Ber., 1991, 124, 1705.
9 E. M. Vogl, J. Bruckmann, C. Krüger and M. W. Haenel, J.
Organomet. Chem., 1996, 520, 249.
10 S. Hillebrand, J. Bruckmann, C. Krüger and M. W. Haenel,
Tetrahedron Lett., 1995, 36, 75.
2 (0.46 g, 79%) (Found: C, 42.86; H, 3.02. C40H34Au2Cl4OP2
requires C, 42.58; H, 3.03%); mmax/cm−1 (AuCl) 318 (Nujol); dH
3
4
(300 MHz) 7.62 [2 H, dd, J(HH) = 7.7 Hz, J(HH) = 1.2 Hz,
H(1,8)], 7.44–7.25 (20 H, m, Ph), 7.06 [2 H, apparent t, 3J(HH) =
3
4
7.7 Hz, H(2,7)], 6.44 [2 H, ddd, J(HH) = 7.7 Hz, J(HH) =
3
1.3 Hz, J(HP) = 12.7 Hz, H(3,6)], 5.30 (2 H, s, CH2Cl2), 1.69
(6 H, s, 2 CH3); dP (121.5 MHz) 24.0 (s); dC (125.7 MHz) 152.6
(2 C, s, CO), 134.4 (8 C, m, o-C6H5P), 133.1 (2 C, s, C6H3OP),
131.5 (4 C, s, p-C6H5P), 131.3 (2 C, s, C6H3OP), 129.6 (2 C, s,
C6H3OP), 129.5 (2 C, s, C6H3OP), 128.9 (8 C, m, m-C6H5P),
124.4 (4 C, apparent t, i-C6H5P), 116.4 [2 C, d, 1J(CP) = 58 Hz,
i-C6H3OP], 34.6 (s, CMe2), 31.6 (2 C, s, 2 CH3), 53.4 (s, CH2Cl2).
3 (0.73 g, 91%) (Found: C, 40.79; H, 2.42. C37H28Au2Cl4OP2
requires C, 40.90; H, 2.59%); mmax/cm−1 (AuCl) 332, 321 (Nujol);
dH (300 MHz) 8.17 [2 H, d, 3J(HH) = 7.8 Hz, H(1,9)], 7.61–7.46
(20 H, m, Ph), 7.41 [2 H, apparent t, 3J(HH) = 7.7 Hz, H(2,8)],
11 V. Pawlowski, H. Kunkely and A. Vogler, Inorg. Chim. Acta, 2004,
357, 1309.
12 S. J. Berners-Price, M. A. Mazid and P. J. Sadler, J. Chem. Soc.,
Dalton Trans., 1984, 969.
13 S. J. Berners-Price and P. J. Sadler, Inorg. Chem., 1986, 25, 3822.
14 S. J. Berners-Price, R. J. Bowen, T. W. Hambley and P. C. Healy, J.
Chem. Soc., Dalton Trans., 1999, 1337.
15 Ortep representations have been done using Ortep-3 for Windows
(L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565). Ellipsoids are
drawn at 30% probability.
3
3
7.06 [2 H, dd, J(HH) = 7.7 Hz, J(HP) = 13.4, H(3,7)], 5.30
(2 H, s, CH2Cl2); dP (121.5 MHz) 25.2 (s); dC (125.7 MHz) 156.2
(2 C, s, CO), 134.3 [8 C, d, J(CP) = 15 Hz, o- C6H5P), 132.9 [2 C,
d, J(CP) = 8 Hz, C6H3OP], 132.7 (4 C, s, p-C6H5P), 129.7 [8 C,
1
d, J(CP) = 12 Hz, m-C6H5P), 127.2 [4 C, d, J(CP) = 64 Hz,
i-C6H5P), 124.8 (2 C, s, C6H3OP), 124.3 (2 C, s, C6H3OP), 124.2
[2 C, d, J(CP) = 17 Hz, C6H3OP], 113.6 [2 C, d, 1J(CP) = 58 Hz,
i-C6H3OP], 53.4 (s, CH2Cl2).
3 4 6 6
D a l t o n T r a n s . , 2 0 0 4 , 3 4 5 9 – 3 4 6 7