2566
R. Galeazzi et al.
PAPER
calculations the hybrid functional B3LYP, which contains
gradient corrections for both exchange and correlation was
chosen. The molecular electrostatic potential and the frontier
molecular orbital were calculated for all the compounds
showing no remarkable differences. The stability of both the
reactants and the conjugate bases was calculated referring to
the isodesmic reactions and the correlated pKa values and the
geometry of both reactants and products were fully
optimized at B3LYP/6-31G* theory level: 1c, DE 14.08
kcal/mol; 1d, DE 13.51 kcal/mol; 1b, DE 5.09 kcal/mol; 1e,
DE 4.59 kcal/mol; 1a, DE 0.0 kcal/mol; 1g, DE –3.98 kcal/
mol; 1i, DE –5.46 kcal/mol; 1h, DE –5.76 kcal/mol; 1k, DE
–5.51 kcal/mol; 1j, DE –5.71 kcal/mol. For leading
references, see: (b) Weiner, S. J.; Kollman, P. A.; Nguyen,
D. T.; Case, D. A. J. Comput. Chem. 1986, 7, 230.
References
(1) (a) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44,
4653. (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S.
Tetrahedron 1996, 52, 8001. (c) Ciganek, E. Org. React.
1997, 51, 201. (d) Basavaiah, D.; Rao, A. J.; Satyanarayana,
J. Chem. Rev. 2003, 103, 811.
(2) (a) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn.
1968, 41, 2815. (b) Baylis, A. B.; Hillman, M. E. D. German
Patent 2155113, 1972; Chem. Abstr. 1972, 77, 34174.
(3) (a) Brzezinski, L. J.; Rafel, S.; Lehavy, J. W. J. Am. Chem.
Soc. 1997, 119, 4317. (b) Aggarwal, V. K.; Mereu, A.;
Tarver, G. J.; McCague, R. J. Org. Chem. 1998, 63, 7183.
(c) Kataoka, T.; Iwama, T.; Tsujiyama, S.; Iwamura, T.;
Watanabe, S. Tetrahedron 1998, 54, 11813. (d) Shi, M.;
Jiang, J.-K.; Feng, Y.-S. Org. Lett. 2000, 2, 2397. (e) Yang,
K.-S.; Chen, K. Org. Lett. 2000, 2, 729.
(c) Chang, G.; Guida, W. C.; Still, W. C. J. Am. Chem. Soc.
1989, 111, 4379. (d) Mohamadi, H.; Richards, N. G. J.;
Guida, W. C.; Liskamo, R.; Lipton, M.; Caulfield, C.;
Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem.
1990, 11, 440. (e) Frisch, M. J.; Trucks, G. W.; Schlegel, H.
B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.;
Burant, J. C.; Dapprich, S.; Millan, J. M.; Daniels, A. D.;
Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone,
V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;
Adamo, C.; Clifford, S.; Ochterski, J.; Patersson, G. A.;
Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malik, D. K.; Rabuck,
A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.;
Gonzales, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J.
Gaussian 98 Revision A.9; Gaussian Inc.: Pittsburgh, 1998.
(f) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens.
Matter Mater. Phys. 1988, 37, 785. (g) Becke, A. D. Phys.
Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098. (h) Mihelich,
B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989,
157, 200. (i) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(12) It is worth mentioning that molecular mechanics
calculations carried out for all compounds 5 indicate the
presence of a number of conformers within a short energy
range. Rotameric mixtures are evidenced by the 1H NMR
spectra of the ethyl derivatives 5b,d,f,k, where a multiplet or
a double quartet collapsing at 50 °C into a quartet takes place
for the ethyl quartet.
(4) Ciclosi, M.; Fava, C.; Galeazzi, R.; Orena, M.; Sepulveda-
Arques, J. Tetrahedron Lett. 2002, 58, 2199.
(5) For synthesis of similar compounds, see: (a) Perlmutter, P.;
Teo, C. C. Tetrahedron Lett. 1984, 25, 5951.
(b) Bertenshaw, S.; Kahn, M. Tetrahedron Lett. 1989, 30,
2731. (c) Cyrener, J.; Burger, K. Monatsh. Chem. 1994, 125,
1279. (d) Kündig, E. P.; Xu, L. H.; Schnell, B. Synlett 1994,
413. (e) Campi, E. M.; Holmes, A.; Perlmutter, P.; Teo, C.
C. Aust. J. Chem. 1995, 48, 1535. (f) Richter, H.; Jung, G.
Tetrahedron Lett. 1998, 39, 2729. (g) Bucholz, R.;
Hoffmann, H. M. R. Helv. Chim. Acta 1991, 74, 1213.
(h) Kim, H. S.; Kim, T. Y.; Chung, Y. M.; Lee, H. J.; Kim,
J. N. Tetrahedron Lett. 2000, 41, 2613. (i) Rajesh, S.;
Banerji, B.; Iqbal, J. J. Org. Chem. 2002, 67, 7852.
(6) (a) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron 1996,
52, 1069. (b) Galeazzi, R.; Geremia, S.; Mobbili, G.; Orena,
M. Tetrahedron: Asymmetry 1996, 7, 79. (c) Galeazzi, R.;
Geremia, S.; Mobbili, G.; Orena, M. Tetrahedron:
Asymmetry 1996, 7, 3573. (d) Galeazzi, R.; Mobbili, G.;
Orena, M. Tetrahedron: Asymmetry 1997, 8, 133.
(e) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron 1999,
55, 261. (f) Galeazzi, R.; Mobbili, G.; Orena, M.
Tetrahedron 1999, 55, 4029. (g) Galeazzi, R.; Martelli, G.;
Mobbili, G.; Orena, M.; Rinaldi, S. Tetrahedron: Asymmetry
2003, 14, 3353. (h) Fava, C.; Galeazzi, R.; Mobbili, G.;
Orena, M. Tetrahedron: Asymmetry 2003, 14, 3697.
(7) (a) Overman, L. E. J. Am. Chem. Soc. 1974, 96, 597.
(b) Overman, L. E. J. Am. Chem. Soc. 1976, 98, 2901.
(c) Mehmandust, M.; Petit, Y.; Larcheveque, M.
Tetrahedron Lett. 1992, 33, 4313. (d) Martin, C.;
Bortolussi, M.; Bloch, R. Tetrahedron Lett. 1999, 40, 3735.
(8) Nishikawa, T.; Asai, M.; Ohyabu, N.; Isobe, M. J. Org.
Chem. 1998, 63, 188.
(9) (a) Kang, S. H.; Kim, G. T.; Yoo, Y. S. Tetrahedron Lett.
1997, 38, 603. (b) Kang, S. H.; Kim, J. S.; Youn, J.-H.
Tetrahedron Lett. 1998, 39, 9047.
(13) Foucaud, A.; El Guemmout, F. Bull. Soc. Chim. Fr. 1989,
403.
(14) A concerted four-centers mechanism cannot be excluded,
and investigation is currently underway. For a similar
reaction recently reported in the literature, see: Mamaghani,
M.; Badrian, A. Tetrahedron Lett. 2004, 45, 1547.
(10) (a) An adduct of DBU with alkyl bromides has been already
reported: Oediger, H.; Kabbe, H.; Moller, F.; Either, K.
Chem. Ber. 1966, 99, 2012. (b) Spectral data for the adduct
A: 1H NMR (CDCl3, 200 MHz): d = 1.42–1.76 (m, 6 H),
1.78–1.92 (m, 2 H), 2.56–2.71 (m, 2 H), 3.15–3.39 (m, 6 H).
13C NMR (CDCl3, 50 MHz): d = 19.5, 24.0, 26.8, 28.9, 32.0,
37.8, 48.7, 54.4, 77.2, 166.1.
(11) (a) The reactivity of the Baylis–Hillman adducts agrees with
the relative acidity of the hydroxy functionality obtained
from calculations. All the geometries were optimized at DFT
level of theory. Ab initio DFT calculations were carried out
using the GAUSSIAN 98 program package. For DFT
(15) (a) Cardillo, G.; Orena, M. Tetrahedron 1990, 46, 3321.
(b) Orena, M. Amination Reactions Promoted by
Electrophiles, In Houben-Weyl, Methods of Organic
Chemistry, Stereoselective Synthesis, Vol. E 2le; Helmchen,
G.; Hofmann, R. W.; Mulzer, J.; Schauman, E., Eds.;
Thieme: Stuttgart, 1995, 5291–5355. (c) Jordá-Gregori, J.
M.; González-Rosende, M. E.; Sepùlveda-Arques, J.;
Galeazzi, R.; Orena, M. Tetrahedron: Asymmetry 1999, 10,
1135. (d) Jordà-Gregori, J. M.; Gonzalez-Rosende, M. E.;
Cava-Montesinos, P.; Sepùlveda-Arques, J.; Galeazzi, R.;
Orena, M. Tetrahedron: Asymmetry 2000, 11, 3769.
Synthesis 2004, No. 15, 2560–2566 © Thieme Stuttgart · New York