Communications
[4] Y. Ding, Q. Ma, H. W. Roesky, R. Herbst-Irmer, I. Usón, M.
Noltemeyer, H.-G. Schmidt, Organometallics 2002, 21, 5216 –
5220.
[5] Y. Ding, Q. Ma, H. W. Roesky, I. Usón, M. Noltemeyer, H.-G.
Schmidt, J. Chem. Soc. Dalton Trans. 2003, 1094 – 1098.
[6] L. W. Pineda, V. Jancik, H. W. Roesky, D. Neculai, A. M.
Neculai, Angew. Chem. 2004, 116, 1443 – 1445; Angew. Chem.
Int. Ed. 2004, 43, 1419 – 1421.
CH2O)Ge{N(SiMe3)2}2]
(dppe = bis(diphenylphosphanyl)-
ethene)[13] (1.785(6) ), a compound which has almost the
same coordination environment and geometry at the germa-
nium center as 4, correlates well with that in 4.
In summary the reaction of 1 and elemental sulfur
resulted in the formation of the title compound 4 which
represents a new class of “carbon-free” carbonic acid
analogues based on germanium. The stability of 4 against
oxygen and water at room temperature makes these systems
quite interesting for biological investigations.
[7] a) F. Duus in Comprehensive Organic Chemistry, Vol. 3 (Eds.: D.
Barton, W. D. Ollis), Pergamon, Oxford, 1979, pp. 420 – 421; b) J.
Hine, Physical Organic Chemistry, McGraw-Hill, 1962, p. 238.
[8] Crystal data for 4·toluene: C36H50GeN2OS, Mr = 631.43, mono-
clinic, space group C2/c, a = 26.021(1), b = 16.045(1), c =
18.006(2) , b = 114.79(1)8, V= 6825(1) 3, Z = 8, 1calcd
1.229 gcmÀ3
F(000) = 2688, l = 1.54178 , T= 100(2) K,
=
Experimental Section
,
m(CuKa) = 2.002 mmÀ1. Data for the structure were collected on
a Bruker three-circle diffractometer equipped with a SMART
6000 CCD detector. Intensity measurements were performed on
a rapidly cooled crystal (0.20 0.10 0.10 mm3) in the range
6.66 ꢀ 2q ꢀ 118.088. Of the 21505 measured reflections, 4748
were independent [R(int) = 0.0363]. The structure was solved by
direct methods (SHELXS-97)[14] and refined with all data by full-
All manipulations were performed under a dry and oxygen-free
atmosphere (N2 or Ar) by using Schlenk-line and glove-box
techniques. Solvents were purified prior to use by distillation over
appropriate drying agents in a nitrogen atmosphere.
4: A solution of 1 (1.56 g, 3.07 mmol) in toluene (30 mL) was
slowly added to a suspension of elemental sulfur (0.09 g, 3.07 mmol)
in toluene (15 mL) by cannula at room temperature. After 3 days
under constant stirring at ambient temperature the yellow solution
turned slightly green. After removal of all volatiles the remaining
crude product was rinsed with pentane (3 10 mL) and dried under
reduced pressure to yield pure 4. Yield: 1.10 g (66%); m.p. 3008C
(decomp); IR (KBr): n˜ = 3238, 3063, 2965, 2867, 1638, 1539, 1442,
matrix least squares on F2.[15] The hydrogen atoms of C H bonds
À
were placed in idealized positions, whereas the hydrogen atom
from the OH moiety was localized from the difference electron-
density map and refined isotropically. The final refinements
converged at R1 = 0.0283 for I > 2s(I), wR2 = 0.0730 for all data.
The final difference Fourier synthesis gave a min/max residual
electron density À0.279/ + 0.355 eÀ3. CCDC-240065 (4) con-
tains the supplementary crystallographic data for this paper.
c.uk/conts/retrieving.html (or from the Cambridge Crystallo-
graphic Data Centre, 12 Union Road, Cambridge CB21EZ, UK;
fax: (+ 44)1223-336-033; or deposit@ccdc.cam.ac.uk).
[9] a) N. N. Greenwood, A. Earnshaw, Chemistry ofthe Elements ,
Butterworth-Heinemann, Oxford, 1997, p. 60; b) A. F. Wells,
Structural Inorganic Chemistry, Clarendon, Oxford, 1984, p. 357.
[10] H. Puff, S. Franken, W. Schuh, W. Schwab, J. Organomet. Chem.
1983, 254, 33 – 41.
1388, 1322, 1257, 1175, 1102, 1023, 933, 875, 797, 712, 501 cmÀ1
;
1H NMR (500 MHz, C6D6, 258C, TMS): d = 7.09–7.16 (m, 6H, m-, p-
Ar-H), 4.83 (s, 1H, g-CH), 3.62 (sept, 3J(H,H) = 6.8 Hz, 2H,
CH(CH3)2), 3.35 (sept, 3J(H,H) = 6.8 Hz, 2H, CH(CH3)2), 2.30 (s,
1H, OH), 1.57 (d, 3J(H,H) = 6.8 Hz, 6H, CH(CH3)2), 1.47 (s, 6H,
3
3
CH3), 1.26 (d, J(H,H) = 6.8 Hz, 6H, CH(CH3)2), 1.16 (d, J(H,H) =
6.8 Hz, 6H, CH(CH3)2), 1.05 ppm (d, 3J(H,H) = 6.8 Hz, 6H,
CH(CH3)2); 13C NMR (125.8 MHz, C6D6, 258C, TMS): d = 169.9
=
(C N), 145.9, 144.9, 137.2, 128.9, 124.8, 124,6 (i-, o-, m-, p-, Ar), 98.5
(g-CH), 29.5 (CH3), 27.9 (CH(CH3)2), 26.3 (CH(CH3)2), 24.7
(CH(CH3)2), 24.6 (CH(CH3)2), 23.8 (CH(CH3)2), 23.7 ppm
(CH(CH3)2); EI-MS (70 eV): m/z (%): 540 (40) [M]+, 525 (100)
[MÀCH3]+; elemental analysis (%) calcd for C29H42GeN2OS (539.32):
C 64.59, H 7.85, N 5.19; found: C 64.20, H 7.57, N 5.12.
[11] A. Fischer, K. Jacob, F. T. Edelmann, Z. Anorg. Allg. Chem.
2003, 629, 963 – 967.
[12] M. Veith, S. Becker, V. Huch, Angew. Chem. 1989, 101, 1287 –
1289; Angew. Chem. Int. Ed. Engl. 1989, 28, 1237 – 1238. For
comparison, see also M. C. Kuchta, G. Parkin, J. Chem. Soc.
Chem. Commun. 1994, 1351 – 1352; M. Veith, A. Rammo, Z.
Anorg. Allg. Chem. 1997, 623, 861 – 872; I. Saur, G. Rima, H.
Gornitzka, K. Miqueu, J. Barrau, Organometallics 2003, 22,
1106 – 1109.
Received: June 4, 2004
Keywords: acids · germanium · hydrogen bonds · oxidative
.
addition · sulfur
[13] Z. T. Cygan, J. W. Kampf, M. M. Banaszak Holl, Organometal-
lics 2004, 23, 2370 – 2375.
[1] J. McMurry, Organic Chemistry, Brooks-Cole, CA, 1992,
pp. 695 – 705.
[14] “SHELXS-97, Program for Structure Solution”: G. M. Shel-
drick, Acta Crystallogr. Sect. A 1990, 46, 467 – 473.
[15] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure
Refinement, University of Gꢀttingen, Gꢀttingen (Germany),
1997.
[2] P. P. Power, Chem. Rev. 1999, 99, 3463 – 3504.
[3] a) N. Tokitoh, R. Okazaki, Adv. Organomet. Chem. 2001, 47,
121 – 166; b) N. Tokitoh, T. Matsumoto, R. Okazaki, Bull. Chem.
Soc. Jpn. 1999, 72, 1665 – 1684; c) T. Matsumoto, N. Tokitoh, R.
Okazaki, J. Am. Chem. Soc. 1999, 121, 8811 – 8824.
5536
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 5534 –5536