8670
D. W. Jeffery, M. V. Perkins / Tetrahedron Letters 45(2004) 8667–8671
in the 1H NMR spectrum of the crude reaction mixture.
The entire ring stereochemistry has been confirmed by
NOE experiments on related analogues27 and supports
trans (axial) methylation and is in accordance with the
findings of Chounan et al.24
2004, 69, 991–992;(f) Kozhinov, D. V.;Behar, V. J. Org.
Chem. 2004, 69, 1378–1379.
10. Evans, D. A.;Gage, J. R. Org. Synth. 1990, 68, 77–91.
11. (a) Trova, M. P.;Wang, Y. Tetrahedron 1993, 49, 4147–
4158;(b) Sieburth, S. McN;Chen, C.-A. Synlett 1995,
928–930;(c) Vanderwal, C. D.;Vosburg, D. A.;Weiler, S.;
Sorensen, E. J. Org. Lett. 1999, 1, 645–648;(d) Hinterding,
K.;Singhanat, S.;Oberer, L. Tetrahedron Lett. 2001, 42,
8463–8465;(e) Vanderwal, C. D.;Vosburg, D. A.;Weiler,
S.;Sorensen, E. J. J. Am. Chem. Soc. 2003, 125, 5393–
5407.
12. Walkup, R. D.;Kane, R. J.;Boatman, P. D., Jr.;
Cunningham, R. T. Tetrahedron Lett. 1990, 31, 7587–
7590.
13. Nakajima, N.;Horita, K.;Abe, R.;Yonemitsu, O.
Tetrahedron Lett. 1988, 29, 4139–4142.
In conclusion, we have developed a viable strategy for
the formation of chiral, highly substituted cyclohexan-
one and cyclohexenone derivatives using a tandem
conjugate addition/Dieckmann condensation approach
where an EvansÕ chiral auxiliary acts as a leaving group.
We are investigating this strategy for the formation of
the cyclohexadiene moieties as found in some marine
polypropionate metabolites from the Tridachia family
of molluscs.
14. Walkup, R. D.;Kahl, J. D.;Kane, R. R. J. Org. Chem.
1998, 63, 9113–9116.
15. Mancuso, A. J.;Swern, D. Synthesis 1981, 165–185.
16. Smith, A. B., III;Beauchamp, T. J.;LaMarche, M. J.;
Kaufman, M. D.;Qiu, Y.;Arimoto, H.;Jones, D. R.;
Kobayashi, K. J. Am. Chem. Soc. 2000, 122, 8654–8664.
17. (a) Evans, D. A.;Bartroli, J.;Shih, T. L. J. Am. Chem.
Soc. 1981, 103, 2127–2129;(b) Evans, D. A. Aldrichim.
Acta 1982, 15, 23.
18. (a) Corey, E. J.;Venkateswarlu, A. J. Am. Chem. Soc.
1972, 94, 6190–6191;(b) Corey, E. J.;Cho, H.;Rucker, C.;
Hua, D. H. Tetrahedron Lett. 1981, 22, 3455–3458.
19. Paterson, I.;Florence, G. J.;Gerlach, K.;Scott, J. P.;
Sereinig, N. J. Am. Chem. Soc. 2001, 123, 9535–9544.
20. Stork, G.;Paterson, I.;Lee, F. K. C. J. Am. Chem. Soc.
1982, 104, 4686–4688.
Acknowledgements
We wish to thank the Australian Research Council for
funding and Flinders University for its support and
facilities. We are grateful for the correspondence with
R. D. Walkup, and also C. Adams from the A. B. Smith
III research group, for their helpful insights with the
manipulations of 14 and 15.
Supplementary data
21. Prepared by slowly turning a round bottom flask con-
taining 100g of flash silica with 10mL of pH7 phosphate
buffer on a rotary evaporator without vacuum overnight
at room temperature.
22. House, H. O.;Chu, C.-Y.;Wilkins, J. M.;Umen, M. J. J.
Org. Chem. 1975, 40, 1460–1469.
Supplementary data associated with this article can be
ies of NMR spectra, experimental procedures and data
for compounds 22–27.
23. Boring, D. L.;Sindelar, R. D. J. Org. Chem. 1988, 53,
3617–3621.
References and notes
24. Chounan, Y.;Ono, Y.;Nishii, S.;Kitahara, H.;Ito, S.;
Yamamoto, Y. Tetrahedron 2000, 56, 2821–2831.
25. All new compounds gave spectroscopic data in agreement
1. Ireland, C. M.;Scheuer, P. J. Science 1979, 205, 922–
923.
2. Gavagnin, M.;Mollo, E.;Cimino, G.;Ortea, J. Tetrahe-
dron Lett. 1996, 37, 4259–4262.
3. Ireland, C. M.;Faulkner, D. J.
37(Suppl. No. 1), 223–240.
4. Ksebati, M. B.;Schmitz, F. J. J. Org. Chem. 1985, 50,
5637–5642.
20
with the assigned structures. Compound 25 had ½a
D
À131.9 (c 0.46, CHCl3); 1H NMR (300MHz, CDCl3)
d 6.50–6.46 (m, 1H, CH@C), 4.11 (q, 2H, J = 7.1Hz,
OCH2CH3), 2.64–2.56 (m, 1H, CH(CH3)CH@C), 2.17
(qd, 1H, J = 7.0, 5.3Hz, C(CH3)CH(CH3)), 1.82–1.79 (m,
3H, C(CH3)@CH), 1.42 (s, 3H, C(CH3)), 1.22 (t, 3H,
7.1Hz, OCH2CH3), 1.09 (d, 3H, J = 7.0Hz, C(CH3)CH-
(CH3)), 1.03 (d, 3H, J = 7.2Hz, CH(CH3)CH@C); 13C
NMR (75.5MHz, CDCl3) d 197.4, 173.4, 147.6, 133.5,
60.8, 55.6, 41.8, 33.6, 20.3, 16.4, 14.7, 13.9, 13.0;HRMS
Tetrahedron 1981,
5. Fu, X.;Hong, E. P.;Schmitz, F. J. Tetrahedron 2000, 56,
8989–8993.
6. (a) Gavagnin, M.;Mollo, E.;Castelluccio, F.;Montanaro,
D.;Ortea, J.;Cimino, G. Nat. Prod. Lett. 1997, 10, 151–
156;(b) Gavagnin, M.;Spinella, A.;Castelluccio, F.;
Cimino, G. J. Nat. Prod. 1994, 56, 8989–8993;(c) Dawe,
R. D.;Wright, J. L. C. Tetrahedron Lett. 1986, 27, 2559–
2562.
7. (a) Faulkner, D. J.;Ghiselin, M. T. Mar. Ecol. Prog. Ser.
1983, 13, 295–301;(b) Pawlik, J. R. Chem. Rev. 1993, 93,
1911–1922.
8. Miller, A. K.;Trauner, D. Angew. Chem., Int. Ed. 2003,
42, 549–552.
9. (a) Stetter, H.;Marten, K. Liebigs Ann. Chem. 1982, 240–
249;(b) Bunce, R. A.;Harris, C. R. J. Org. Chem. 1992,
(LSI) calculated for C13H19Oþ3 (M+ÀH): 223.1334;
20
found:223.1328. Compound 26 had ½a À96.4 (c 0.14,
D
CHCl3); 1H NMR (300MHz, CDCl3) d 6.37–6.34 (m, 1H,
CH@C), 2.90–2.79 (m, 1H, CH(CH3)CH@C), 2.24, (s, 3H,
CH3CO), 2.21–2.12 (m, 1H, C(CH3)CH(CH3)), 1.81 (dd,
3H, J = 2.6, 1.4Hz, C(CH3)@CH), 1.35 (s, 3H, C(CH3)),
1.08 (d, 3H, J = 7.2Hz, CH(CH3)CH@C), 0.89 (d,
3H, J = 6.9Hz, C(CH3)CH(CH3)); 13C NMR (75.5MHz,
CDCl3) d 210.3, 200.0, 147.4, 133.5, 62.0, 42.5, 31.9, 30.8,
21.0, 16.9, 16.0, 11.3;HRMS (EI) calculated for C 12H18O2
20
D
(M+):194.1307;found:194.1313. Compound 27 had ½a
À69.0 (c 0.33, CHCl3); 1H NMR (300MHz, CDCl3) d
6.41–6.39 (m, 1H, CH@C), 4.86–4.84 (m, 1H,
@CHACHB), 4.72–4.70 (m, 1H, @CHACHB), 3.08–
2.97(m, 1H, CH(CH3)CH@C), 2.70 (dd, 1H, J = 5.7,
1.2Hz, CHC(CH3)@CH2), 2.19 (s, 3H, CH3CO), 1.84–
57, 6981–6985;(c) Bunce, R. A.;Harris, C. R.
Commun. 1996, 26, 1969–1975;(d) Deville, J. P.;Behar, V.
Org. Lett. 2002, 4, 1403–1405;(e) Martinez, A. D.;
Synth.
Deville, J. P.;Stevens, J. L.;Behar, V.
J. Org. Chem.