Organic Letters
Letter
(7) Lian, Z.; Bhawal, B. N.; Yu, P.; Morandi, B. Palladium-catalyzed
carbon-sulfur or carbon-phosphorus bond metathesis by reversible
arylation. Science 2017, 356, 1059−1063.
(8) (a) Majek, M.; von Wangelin, A. J. Organocatalytic visible light
mediated synthesis of aryl sulfides. Chem. Commun. 2013, 49, 5507−
5509. (b) Koziakov, D.; Majek, M.; Jacobi von Wangelin, A. Metal-free
radical thiolations mediated by very weak bases. Org. Biomol. Chem.
2016, 14, 11347−11352.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, analytical data, and mechanistic
(9) (a) Norris, T.; Leeman, K. Development of a New Variant of the
Migita Reaction for Carbon−Sulfur Bond Formation Used in the
Manufacture of Tetrahydro-4-[3-[4-(2-methyl-1H-imidazol-1-yl)-
phenyl]thio]phenyl-2H-pyran-4-carboxamide. Org. Process Res. Dev.
2008, 12, 869−876. (b) de Koning, P. D.; Murtagh, L.; Lawson, J. P.;
Vonder Embse, R. A.; Kunda, S. A.; Kong, W. Development an Efficient
Route to the 5-Lipoxygenase Inhibitor PF-04191834. Org. Process Res.
Dev. 2011, 15, 1046−1051.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(10) Scattolin, T.; Senol, E.; Yin, G.; Guo, Q.; Schoenebeck, F. Site-
Selective C-S Bond Formation at C-Br over C-OTf and C-Cl Enabled
by an Air-Stable, Easy-to-Recover & Recyclable Pd(I) Catalyst. Angew.
Chem., Int. Ed. 2018, 57, 12425.
Author Contributions
‡These authors contributed equally. All authors have given
approval to the final version of the manuscript.
(11) Galli, C.; Pau, T. The dehalogenation reaction of organic halides
by tributyltin radical: The energy of activation vs. the BDE of the C-X
bond. Tetrahedron 1998, 54, 2893−2904.
Notes
The authors declare no competing financial interest.
(12) (a) Legault, C. Y.; Garcia, Y.; Merlic, C. A.; Houk, K. N. Origin of
Regioselectivity in Palladium-Catalyzed Cross-Coupling Reactions of
Polyhalogenated Heterocycles. J. Am. Chem. Soc. 2007, 129, 12664−
12665. (b) Bickelhaupt, F. M.; Houk, K. N. Analyzing Reaction Rates
with the Distortion/Interaction-Activation Strain Model. Angew.
Chem., Int. Ed. 2017, 56, 10070−10086.
ACKNOWLEDGMENTS
■
We thank B. Ciszek (University of Tu
discussions. Financial support from Boehringer Ingelheim
̈
Stiftung (Exploration Grant) and the University of Tubingen
(Institutional Strategy: Deutsche Forschungsgemeinschaft ZUK
63) is gratefully acknowledged.
̈
bingen) for helpful
(13) (a) Fernandez-Rodriguez, M. A.; Shen, Q.; Hartwig, J. F. Highly
Efficient and Functional-Group-Tolerant Catalysts for the Palladium-
Catalyzed Coupling of Aryl Chlorides with Thiols. Chem. - Eur. J. 2006,
REFERENCES
■
́
12, 7782−7796. (b) Fernandez-Rodríguez, M. A.; Shen, Q.; Hartwig, J.
(1) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.-i.; Kato, Y.; Kosugi,
M. The Palladium Catalyzed Nucleophilic Substitution of Aryl Halides
by Thiolate Anions. Bull. Chem. Soc. Jpn. 1980, 53, 1385−1389.
(2) Barillari, C.; Brown, N. Bioisosteres in Medicinal Chemistry; Wiley-
VCH Verlag GmbH & Co. KGaA, 2012.
(3) Liu, B.; Lim, C.-H.; Miyake, G. M. Visible-Light-Promoted C−S
Cross-Coupling via Intermolecular Charge Transfer. J. Am. Chem. Soc.
2017, 139, 13616−13619.
(4) (a) Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.;
Johannes, J. W. Photoredox Mediated Nickel Catalyzed Cross-
Coupling of Thiols With Aryl and Heteroaryl Iodides via Thiyl
Radicals. J. Am. Chem. Soc. 2016, 138, 1760−1763. (b) Jouffroy, M.;
Kelly, C. B.; Molander, G. A. Thioetherification via Photoredox/Nickel
Dual Catalysis. Org. Lett. 2016, 18, 876−879. (c) Vara, B. A.; Li, X.;
Berritt, S.; Walters, C. R.; Petersson, E. J.; Molander, G. A. Scalable
thioarylation of unprotected peptides and biomolecules under Ni/
photoredox catalysis. Chem. Sci. 2018, 9, 336−344. (d) Jiang, M.; Li, H.;
Yang, H.; Fu, H. Room-Temperature Arylation of Thiols: Breakthrough
with Aryl Chlorides. Angew. Chem., Int. Ed. 2017, 56, 874−879.
(5) (a) Taniguchi, N. Alkyl- or Arylthiolation of Aryl Iodide via
Cleavage of the S−S Bond of Disulfide Compound by Nickel Catalyst
and Zinc. J. Org. Chem. 2004, 69, 6904−6906. (b) Baldovino-
Pantaleon, O.; Hernandez-Ortega, S.; Morales-Morales, D. Adv.
F. A General and Long-Lived Catalyst for the Palladium-Catalyzed
Coupling of Aryl Halides with Thiols. J. Am. Chem. Soc. 2006, 128,
2180−2181. (c) Murata, M.; Buchwald, S. L. A general and efficient
method for the palladium-catalyzed cross-coupling of thiols and
secondary phosphines. Tetrahedron 2004, 60, 7397−7403.
(14) Ananikov, V. P. Nickel: The “Spirited Horse” of Transition Metal
Catalysis. ACS Catal. 2015, 5, 1964−1971.
(15) Weires, N. A.; Caspi, D. D.; Garg, N. K. Kinetic Modeling of the
Nickel-Catalyzed Esterification of Amides. ACS Catal. 2017, 7, 4381−
4385.
(16) Yin, G.; Kalvet, I.; Englert, U.; Schoenebeck, F. Fundamental
Studies and Development of Nickel-Catalyzed Trifluoromethylthiola-
tion of Aryl Chlorides: Active Catalytic Species and Key Roles of Ligand
and Traceless MeCN Additive Revealed. J. Am. Chem. Soc. 2015, 137,
4164−4172.
(17) Jones, K. D.; Power, D. J.; Bierer, D.; Gericke, K. M.; Stewart, S.
G. Nickel Phosphite/Phosphine-Catalyzed C−S Cross-Coupling of
Aryl Chlorides and Thiols. Org. Lett. 2018, 20, 208−211.
(18) Gogoi, P.; Hazarika, S.; Sarma, M. J.; Sarma, K.; Barman, P.
Nickel−Schiff base complex catalyzed C−S cross-coupling of thiols
with organic chlorides. Tetrahedron 2014, 70, 7484−7489.
(19) Gehrtz, P. H.; Kathe, P.; Fleischer, I. Nickel-Catalyzed Coupling
of Arylzinc Halides with Thioesters. Chem. - Eur. J. 2018, 24, 8774−
8778.
́
Synth. Catal. 2006, 348, 236−242. (c) Gomez-Benítez, V.;
́
́
Baldovino-Pantaleon, O.; Herrera-Alvarez, C.; Toscano, R. A.;
Morales-Morales, D. Alkyl- and Arylthiolation of Aryl Halides
Catalyzed by Fluorinated Bis-Imino-Nickel NNN Pincer Complexes
[NiCl2{C5H3N-2,6-(CHNArf)2}]. Tetrahedron Lett. 2006, 47, 5059−
5062. (d) Vantourout, J. C.; Miras, H. N.; Isidro-Llobet, A.; Sproules,
S.; Watson, A. J. B. J. Am. Chem. Soc. 2017, 139, 4769−4779.
(6) (a) Ichiishi, N.; Malapit, C. A.; Wozniak, Ł.; Sanford, M. S.
Palladium- and Nickel-Catalyzed Decarbonylative C−S Coupling to
Convert Thioesters to Thioethers. Org. Lett. 2018, 20, 44−47. (b) Liu,
C.; Szostak, M. Decarbonylative thioetherification by nickel catalysis
using air- and moisture-stable nickel precatalysts. Chem. Commun.
2018, 54, 2130−2133.
(20) Standley, E. A.; Smith, S. J.; Muller, P.; Jamison, T. F. A Broadly
̈
Applicable Strategy for Entry into Homogeneous Nickel(0) Catalysts
from Air-Stable Nickel(II) Complexes. Organometallics 2014, 33,
2012−2018.
(21) Piller, F. M.; Appukkuttan, P.; Gavryushin, A.; Helm, M.;
Knochel, P. Convenient Preparation of Polyfunctional Aryl Magnesium
Reagents by a Direct Magnesium Insertion in the Presence of LiCl.
Angew. Chem., Int. Ed. 2008, 47, 6802−6806.
(22) Sawatzky, R. S.; Ferguson, M. J.; Stradiotto, M. Thieme
Chemistry Journals Awardees − Where Are They Now? Efficient
Cross-Coupling of Secondary Amines/Azoles and Activated (Hetero)-
E
Org. Lett. XXXX, XXX, XXX−XXX