Tetrahedron Letters
5
Supplementary data
Blackmond, D. G. J. Am. Chem. Soc. 2007, 129, 15100–15101;
for excellent, representative reviews, see: (h) Gruttadauria, M.;
Giacalone, F.; Noto, R. Adv. Synth. Catal. 2009, 351, 33–57; (i)
Rah, M.; Singh, V. K. Chem. Commun. 2009, 6687–6703; (j)
Mase, N.; Barbas, C. F. Org. Biomol. Chem. 2010, 8, 4043–4050;
(k) Bhowmick, S., Mondal, A.; Ghosh, A.; Bhowmick, K. C.
Tetrahedron: Asymmetry 2015, 26, 1215–1244.
Supplementary data associated with this article (experi-
mental details, NMR spectra, complementary schemes and
DFT calculations at different levels) can be found, in the
7. When we performed the reaction of 1 and 2 without adding H2O,
after 15 h at rt the conversion was 40%. With 3 equiv of H2O (with
regard to 2) the conversion reached 85%. With 5, 15, and 25 equiv
of H2O, 100%. With 30 equiv, 85%. With 35 equiv, 75%. With 50
equiv, 40%. Thus, in this case there is a plateau between 5 and 25
equiv of H2O. Using 5 equiv and 15 equiv of H2O, the initial
reaction rates were similar (48% conversions after 4 h).
8. We only consider here homogeneous solutions, in which the
concentration of H2O can affect some steps. We do not deem
biphasic systems ("on water" or "under water", where the
enamine is found in the organic layer formed by non-polar
solvents and/or large excesses of carbonyl compounds floating on
the water phase), catalysts with long hydrophobic chains that may
trap enamines, etc. For excellent essays, see: (a) Brogan, A. P.;
Dickerson, T. J.; Janda, K. D. Angew. Chem., Int. Ed. 2006, 45,
8100–8102; (b) Hayashi, Y. Angew. Chem., Int. Ed. 2006, 45,
8103–8104; (c) Blackmond, D. G.; Armstrong, A.; Coombe, V.;
Wells, A. Angew. Chem., Int. Ed. 2007, 46, 3798–3800.
9. Organocatalytic reactions of 1 with 2/4/6/8 have not been
reported (exhaustive SciFinder search). Reactions of 1 with
BnOCH2CHO are known, however: (a) Cordova, A.; Zou, W.;
Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Chem. Eur. J. 2006,
12, 5383–5397; (b) Ibrahem, I.; Zou, W.; Xu, Y.; Cordova, A.
Adv. Synth. Catal. 2006, 348, 211–222; (c) Grondal, C.; Enders,
D. Tetrahedron 2006, 62, 329–337; (d) Ibrahem, I.; Cordova,
A. Tetrahedron Lett. 2005, 46, 3363–3367: (e) Ref. 5.
10. That Pro may racemise chiral -substituted aldehydes is not a
surprise. See, e.g., the first article of the three famous papers of
R. B. Woodward et al. on the synthesis of erythromycin (J. Am.
Chem. Soc. 1981, 103, 3210–3213).
11. Sánchez, D.; Castro-Alvarez, A.; Vilarrasa, J. Tetrahedron Lett.
2013, 54, 6381–6384.
12. Many authors explained that H2O suppresses the formation of
unproductive species (oxazolidinones). Some pointed out that
H2O increases the catalyst concentration. See Refs. 6h–j. In the
present case, it is compulsory to add H2O.
13. In contrast to 2/4/6/8, aldehyde 10 racemises in the presence of
Pro, in DMSO at room temperature. The epimer of 11 turned
out to be the enantiomer of 11'. The epimer of 11' was ent-11.
14. This hydrate was not observed in DMSO-d6 by addition of only
15 equiv of D2O, unless the medium was more ionic: only
when we added 5 equiv of anhydrous LiBr, the percentage of
hydrate in relation to aldehyde was 1:15.
15. The result was 0.023 when measured indirectly by exchange
reactions (see Supplementary Data). By contrast, for standard
ketones such as cyclohexanone, we estimate that the corres-
ponding exchange equilibria have K < 3·10–5.
References and notes
1. For reviews, see: (a) Mlynarski, J.; Gut, B. Chem. Soc. Rev.
2012, 41, 587–596: (b) Enders, D.; Narine, A. A. J. Org.
Chem. 2008, 73, 7857–7870, and refs. 9 and 18 therein; (c)
Markert, M.; Mahrwald, R. Chem. Eur. J. 2008, 14, 40–48.
2. For very recent papers, see: (a) Enders, D.; Terteryan, V.;
Palecek, J. Synthesis 2010, 2979–2984; (b) Albrecht, L.; Jiang,
H.; Dickmeiss, G.; Gschwend, B.; Hansen, S. G.; Jørgensen,
K. A. J. Am. Chem. Soc. 2010, 132, 9188–9196; (c) Yang, H.;
Mahapatra, S.; Cheong, P. H.-Y.; Carter, R. G. J. Org. Chem.
2010, 75, 7279–7290; (d) Pearson, A. J.; Panda, S.
Tetrahedron 2011, 67, 3969–3975; (e) Doyagüez, E. G.;
Corrales, G.; Garrido, L.; Rodríguez-Hernández, J.; Gallardo,
A.; Fernández-Mayoralas, A. Macromolecules 2011, 44, 6268–
6276; (f) Pearson, A. J.; Panda, S. Org. Lett. 2011, 13, 5548–
5551; (g) Ma, G.; Bartoszewicz, A.; Ibrahem, I.; Cordova, A.
Adv. Synth. Catal. 2011, 353, 3114–3122; (h) Fanton, J.;
Camps, F.; Castillo, J. A.; Guérard-Hélaine, C.; Lemaire, M.;
Charmantray, F.; Hecquet, L. Eur. J. Org. Chem. 2012, 203–
210; (i) Palyam, N.; Niewczas, I.; Majewski, M. Synlett 2012,
23, 2367–2370, and preceding articles; (j) Cieplak, M.;
Ceborska, M.; Cmoch, P.; Jarosz, S. Tetrahedron: Asymmetry
2012, 23, 1213–1217; (k) Enders, D.; David, S.; Deckers, K.;
Greb, A.; Raabe, G. Synthesis 2012, 44, 3483–3488; (l)
Doyaguez, E. G.; Fernández-Mayoralas, A. Tetrahedron 2012,
68, 7345–7354; (m) Halperin, S. D.; Britton, R. Org. Biomol.
Chem. 2013, 11, 1702–1705; (n) Miura, D.; Fujimoto, T.;
Tsutsui, A.; Machinami, T. Synlett 2013, 24, 1501–1504; (o)
Dibello, E.; Brovetto, M.; Seoane, G.; Gamenara, D.
Tetrahedron Lett. 2013, 54, 5895–5897; (p) Leczycka, K.;
Chaciak, B.; Cieplak, M.; Cmoch, P.; Jarosz, S. Carbohydr.
Res. 2015, 403, 98–103; (q) Miura, D.; Machinami, T. Modern
Res. Catal. 2015, 4, 20–27; (r) for an application to the
synthesis of palmerolide C, see: Florence, G. J.; Wlochal, J.
Chem. Eur. J. 2012, 18, 14250–14254.
3. Hanessian, S.;Mi, X. Synlett 2010, 761–764.
4. Enders, D.; David, S.; Deckers, K.; Greb, A.; Raabe, G. Synthesis
2012, 44, 3483–3488.
5. The reactions of 1 (0.6 M) with 2 (0.2 M, concentrations in
DMSO/H2O, 10:1 v/v, that is, around 25 equiv of H2O), were
complete after stirring overnight and gave exclusively (TLC,
HPLC, 1H NMR) the indicated stereoisomer, starting from
chiral methyl lactate (≥ 98% ee). Apart from the excess of 1, the
only impurity in the final reaction mixture was its dimer (15%),
see: Enders, D.; Grondal, C. Angew. Chem., Int. Ed. 2005, 44,
1210–1212.
6. For the beneficial effect of several equiv of H2O on Pro-
mediated reactions, see: (a) Nyberg, A.; Usano, A.; Pihko, P.
M. Synlett 2004, 1891–1896 (a case with 10 equiv, the highest
yield but poor ee); (b) Pihko, P.; Pihko, P. M.; Laurikainen, K.
M.; Usano, A.; Nyberg, A. I.; Kaavi, J. A. Tetrahedron 2006,
62, 317–328; (c) See Ref. 2d and ref. 14 therein; (d) see Ref. 2b
(1, 5 equiv of H2O, 68–90% yields); (e) Hayashi, Y.; Aratake,
S.; Itoh, T.; Okano, T.; Sumiya, T.; Shoji, M. Chem. Commun.
2007, 957–959 (best conditions: 3 equiv of H2O); (f) also see:
Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H.
Angew. Chem., Int. Ed. 2004, 43, 1983–1986; for a dual role of
H2O, see: (g) Zotova, N.; Franzke, A.; Armstrong, A.;
16. The exchange of the prolyl group between these intermediates
and the carbonyl compounds yet present in the medium,
mediated by trace amounts of H2O, is very shifted to the right.
See: Isart, C.; Burés, J.; Vilarrasa, J. Tetrahedron Lett. 2008,
49, 5414–5418. Also see the main text below.
17. This is general for -substituted ketones. For aldehydes and
cyclic ketones, all these types of intermediates have been charac-
terised in different solvents. (a) Seebach, D.; Beck, A. K.; Badine,
D. M.; Limbach, M.; Eschenmoser, A.; Treasurywala, A. M.;
Hobi, R.; Prikoszovich, W.; Linder, B. Helv. Chim. Acta 2007,
90, 425–471. (b) Haindl, M. H.; Hioe, J.; Gschwind, R. M. J. Am.
Chem. Soc. 2015, 137, 12835–12842, and refs. cited therein.