300
M. Atißs et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 98 (2012) 290–301
Table 7
MIC values (l
g mLꢁ1) of the bcht against the tested bacterias.
S. aureus
MRSA
S. pneumoniae
B. cereus
E. faecalis
L. monocytogenes
S. typhi
C. albicans
Bcht
128
2
–
>1024
>1024
>1024
>1024
128
2
4
>1024
–
<0.25
–
>1024
–
–
Vancomycine
Ciprofloxcacin
Amphotericin B
2
–
–
2
–
–
4
–
–
4
–
–
–
–
0.25
sensitive strains MIC values of 128 l
g mLꢁ1. However, bcht were
References
inactive against the other microorganisms.
[1] D.G. Patil, M.R. Chedekel, J. Org. Chem. 49 (1984) 997–1000.
[2] N. Bailey, A.W. Dean, D.B. Judd, D. Middlemiss, R. Storer, S.P. Watson, Bioorg.
Med. Chem. Lett. 6 (1996) 1409–1414.
[3] H. Ghosh, Synlett (2009) 2882–2883.
[4] M.K. Rauf, M. Ebihara, A. Badshah, Imtiaz-ud-Din, Acta Crystallogr. E 68 (2012)
o119.
According to the antibacterial studies, the efficacy against Gram
positive bacteria is higher than against Gram negative bacteria. The
lower anti-yeast efficacy of the compound may be due to the dif-
ferences between the cell structures of bacteria and yeast. While
the cell walls of fungi contain chitin, the cell walls of bacteria con-
tain murein [67].
[5] W. Henderson, R.D.W. Kemmitt, S. Mason, M.R. Moore, J. Fawcett, D.R. Russell,
Dalton Trans. (1992) 59–66.
[6] M. Lipowska, B.L. Hayes, L. Hansen, A. Taylor, L.G. Marzilli, Inorg. Chem. 35
(1996) 4227–4231.
[7] C. Sacht, M.S. Datt, S. Otto, A. Roodt, Dalton Trans. (2000) 4579–4586.
[8] J.H. Hu, X.H. Fan, X.L. Du, T.B. Wei, Phosphorus Sulfur 185 (2010) 2558–2562.
[9] M. Merdivan, F. Karipcin, N. Kulcu, R.S. Aygun, J. Therm. Anal. Calorim. 58
(1999) 551–557.
[10] G. Binzet, H. Arslan, U. Florke, N. Kulcu, N. Duran, J. Coord. Chem. 59 (2006)
1395–1406.
[11] D.S. Mansuroglu, H. Arslan, U. Florke, N. Kulcu, J. Coord. Chem. 61 (2008)
3134–3146.
[12] Y.F. Yuan, J.T. Wang, M.C. Gimeno, A. Laguna, P.G. Jones, Inorg. Chim. Acta 324
(2001) 309–317.
[13] B.K. Kaymakcioglu, S. Rollas, E. Korcegez, F. Aricioglu, Eur. J. Pharm. Sci. 26
(2005) 97–103.
[14] B.K. Venkatesh, Y.D. Bodke, S.A. Biradar, Phosphorus Sulfur 185 (2010) 1926–
1931.
[15] S. Saeed, N. Rashid, P.G. Jones, M. Ali, R. Hussain, Eur. J. Med. Chem. 45 (2010)
1323–1331.
[16] G.Y. Sarkis, E.D. Faisal, J. Heterocycl. Chem. 22 (1985) 137–140.
[17] Z. Zhong, R. Xing, S. Liu, L. Wang, S.B. Cai, P.C. Li, Carbohyd. Res. 343 (2008)
566–570.
[18] S. Saeed, N. Rashid, P.G. Jones, R. Hussain, M.H. Bhatti, Cent. Eur. J. Chem. 8
(2010) 550–558.
[19] S. Nishizawa, R. Kato, T. Hayashita, N. Teramae, Anal. Sci. 14 (1998) 595–597.
[20] L.S. Evans, P.A. Gale, M.E. Light, R. Quesada, New J. Chem. 30 (2006) 1019–
1025.
[21] J.N. Babu, V. Bhalla, M. Kumar, R.K. Puri, R.K. Mahajan, New J. Chem. 33 (2009)
675–681.
[22] V. Blazek, N. Bregovic, K. Mlinaric-Majerski, N. Basaric, Tetrahedron 67 (2011)
3846–3857.
Conclusions
In this work, we have synthesized a new thiourea derivative, 1-
benzoyl-3-(5-chloro-2-hydroxyphenyl) thiourea and characterized
by elemental analyses, FT-IR, 13C, 1H NMR spectroscopy. The crys-
tal and molecular structure of bcht have been determined from
single crystal X-ray diffraction data. We have also calculated the
geometric parameters, vibrational frequencies and NMR spectros-
copy of bcht by using the B3LYP method with the standard 6-
311++G(d,p) basis sets. We have used the scaling factor values of
0.9879 for DFT/6-311++G (d,p) in order to fit the theoretical bond
lengths with the experimental ones. Scaling factors results seemed
to be in a better agreement with the experimental ones. The differ-
ence between experimental and calculated geometrical parameters
and vibration mode can come from the difference of the state. In
fact, it is evident gas state vibration frequencies are larger than
those of solid state. Moreover, solid states of the compound include
a lot of intra- and inter-molecular interactions. The experimental
and theoretical chemical shift results are generally in good agree-
ment. However, all of the theoretical 13C NMR values a bit bigger
from observed values. But in 1H NMR values, there is not any sys-
tematic relation between experimental and calculated values. The
electronic properties were also calculated and experimental elec-
tronic spectrum was recorded with helping of UV–Vis spectrome-
ter. The theoretical electronic transition peaks for bcht in ACN
and MeOH solvent are red-shifted compared with the experimen-
tal data. In general, it is seen acceptable agreement between exper-
imental and theoretical data. Bcht exhibited antimicrobial activity
against, L. monocytogenes and S. aureus.
[23] Y. Sohtome, Y. Hashimoto, K. Nagasawa, Adv. Synth. Catal. 347 (2005) 1643–
1648.
[24] Y.B. Huang, C. Cai, J. Chem. Res.Sci. (2009) 686–688.
[25] W. Huang, C. Peng, L. Guo, R. Hu, B. Han, Synlett (2011) 2981–2984.
[26] J. Alonso-Chamarro, Perkin Trans. (2001) 2211–2218.
[27] D. Wilson, M.D. Arada, S. Alegret, M. del Valle, J. Hazard. Mater. 181 (2010)
140–146.
[28] A. Dago, M.A. Simonov, E.A. Pobedimskaya, A. Martin, A. Masias,
Kristallografiya 33 (1988) 1021–1023.
[29] V.K. Madan, A.D. Taneja, V.P. Kudesia, J. Indian Chem. Soc. 68 (1991) 471–472.
[30] W.Q. Zhou, J.M. Lu, Z.J. Zhang, Y. Zhang, Y. Cao, L. Lu, X.J. Yang, Vib. Spectrosc.
34 (2004) 199–204.
[31] B.M. Yamin, U.M. Osman, Acta Crystallogr. E 67 (2011) O1286–U1684.
[32] W. Yang, W.Q. Zhou, Z.J. Zhang, J. Mol. Struct. 828 (2007) 46–53.
[33] H. Arslan, U. Florke, N. Kulcu, G. Binzet, Spectrochim. Acta A 68 (2007) 1347–
1355.
Acknowledgements
This work supported by Nevsßehir University Scientific Research
Projects Unit (BAP, Project No.: 2011/14). We also thank Assoc.
Prof. Dr. Osman CANKO for Gaussian 09 calculation performed at
Erciyes University, Kayseri, Turkey.
[34] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman,
J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, Gaussian Inc.,
Wallingford, CT, 2009.
Appendix A. Supplementary data
Crystallographic data (excluding structure factors) have been
deposited with the Cambridge Crystallographic Data Centre as
the supplementary publication No. CCDC 878345. A copy of the
data can be obtained, free of charge, on application to CCDC, 12 Un-
ion Road, Cambridge CB21EZ, UK (fax: +44 1223 336033 or e-mail:
deposit@ccdc.cam.ac.uk).
[35] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2:
a complete structure solution, refinement and analysis program, J. Appl. Cryst.
42 (2009) 339–341.
[36] G.M. Sheldrick, Acta Cryst. SHELXS A64 (2008) 112–122.
[37] G.M. Sheldrick, Acta Cryst. SHELXL A64 (2008) 112–122.