Organic Letters
ORCID
Letter
B.; Zhou, S.; Zhou, S.; Wei, W.; Liu, J.; Zhan, Y.; Cheng, D.; Chen, M.;
Li, Y.; Wang, B.; Xue, X.; Li, Z. ChemistrySelect 2017, 2, 1620.
(16) Izzo, F.; Schafer, M.; Stockman, R.; Lucking, U. Chem. - Eur. J.
̈
̈
2017, 23, 15189.
(17) (a) Leca, D.; Fensterbank, L.; Laco
̂
te, E.; Malacria, M. Org. Lett.
2002, 4, 4093. (b) Felim, A.; Toussaint, A.; Phillips, C. R.; Leca, D.;
Vagstad, A.; Fensterbank, L.; Lacote, E.; Malacria, M. Org. Lett. 2006,
8, 337. (c) Leca, D.; Song, K.; Amatore, M.; Fensterbank, L.; Lacote,
E.; Malacria, M. Chem. - Eur. J. 2004, 10, 906.
Author Contributions
§A.T. and S.S.J.-C. contributed equally
̂
̂
Notes
(18) (a) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
(b) Dauban, P.; Dodd, R. H. Synlett 2003, 1571.
(19) For selected developments in hypervalent iodine reagents with
N-ligands, see: (a) Sandtorv, A. H.; Stuart, D. R. Angew. Chem., Int. Ed.
2016, 55, 15812. (b) Krasnova, L. B.; Hili, R. M.; Chernoloz, O. V.;
Yudin, A. K. ARKIVOC 2005, iv, 26. (c) Souto, J. A.; Martínez, C.;
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge The Royal Society for a University
Research Fellowship (to J.A.B.) and EPSRC [CAF to J.A.B.
(EP/J001538/1), Impact Acceleration Account (EP/K503733/
1), DTA Studentship (to S.S.J.-C. and E.L.B.)]. This research
was supported by the project Laboratorio Sistema Code
PONa300369 financed by MIUR, the University of Bari.
Velilla, I.; Muniz, K. Angew. Chem., Int. Ed. 2013, 52, 1324.
(d) Lucchetti, N.; Scalone, M.; Fantasia, S.; Muniz, K. Angew. Chem.,
̃
̃
Int. Ed. 2016, 55, 13335. (e) Marzag, H.; Schuler, M.; Tatibouet, A.;
̈
Reboul, V. Eur. J. Org. Chem. 2017, 2017, 896. (f) Wang, H.; Cheng,
Y.; Becker, P.; Raabe, G.; Bolm, C. Angew. Chem., Int. Ed. 2016, 55,
12655.
(20) (a) Boultwood, T.; Affron, D. P.; Trowbridge, A. D.; Bull, J. A. J.
Org. Chem. 2013, 78, 6632−6647. (b) Boultwood, T.; Affron, D. P.;
Bull, J. A. J. Visualized Exp. 2014, 87, e51633. Using this protocol to
check stability, we observed that the sulfonamide was significantly
retained on the neutral alumina facilitating purification.
REFERENCES
■
(1) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57,
2832.
(2) (a) Lucking, U. Angew. Chem., Int. Ed. 2013, 52, 9399. (b) Sirvent,
̈
(21) Using technical grade 2-mercaptobenzylalcohol.
J. A.; Lucking, U. ChemMedChem 2017, 12, 487. (c) Frings, M.; Bolm,
̈
(22) For alternative synthesis of sulfonamides from thiols using I2
and TBHP, see: Feng, J.-B.; Wu, X.-F. Org. Biomol. Chem. 2016, 14,
6951.
C.; Blum, A.; Gnamm, C. Eur. J. Med. Chem. 2017, 126, 225.
(3) (a) Lucking, U.; Jautelat, R.; Kruger, M.; Brumby, T.; Lienau, P.;
̈
̈
Schafer, M.; Briem, H.; Schulze, J.; Hillisch, A.; Reichel, A.; Wengner,
̈
(23) Resubjecting sulfonimidate 2a to the reaction conditions gave an
81% conversion to the sulfonamide. Presumably the increased
ammonia concentration when using 4 equiv of ammonium carbamate
buffers the acidic reaction conditions to reduce the SN2 alkylation of
solvent or other nucleophiles as the first step of the rearrangement.
(24) Rapid oxidation of aryl thiols to disulfides has been reported
using bisacetoxyiodobenzene in isopropanol: Rattanangkool, E.;
Krailat, W.; Vilaivan, T.; Phuwapraisirisan, P.; Sukwattanasinitt, M.;
Wacharasindhu, S. Eur. J. Org. Chem. 2014, 2014, 4795.
A. M.; Siemeister, G. ChemMedChem 2013, 8, 1067. (b) Foote, K. M.;
Lau, A.; Nissink, J. W. M. Future Med. Chem. 2015, 7, 873.
(4) For recent reviews: (a) Bull, J. A.; Degennaro, L.; Luisi, R. Synlett
2017, 28, 2525. (b) Bizet, V.; Hendriks, C. M. M.; Bolm, C. Chem. Soc.
Rev. 2015, 44, 3378.
(5) (a) Okamura, H.; Bolm, C. Org. Lett. 2004, 6, 1305. (b) Wang, J.;
Frings, M.; Bolm, C. Chem. - Eur. J. 2014, 20, 966. (c) Mancheno, O.
G.; Bolm, C. Org. Lett. 2006, 8, 2349. (d) Bizet, V.; Buglioni, L.; Bolm,
C. Angew. Chem., Int. Ed. 2014, 53, 5639.
̃
(6) For selected imination reactions of sulfides, see: (a) Lebel, H.;
Piras, H. J. J. Org. Chem. 2015, 80, 3572. (b) Mancheno, O. G.; Bolm,
̃
C. Chem. - Eur. J. 2007, 13, 6674. (c) Cho, G. Y.; Bolm, C. Tetrahedron
Lett. 2005, 46, 8007. (d) Armstrong, A.; Edmonds, I. D.; Swarbrick, M.
E. Tetrahedron Lett. 2003, 44, 5335.
(7) Chinthakindi, P. K.; Naicker, T.; Thota, N.; Govender, T.;
Kruger, H. G.; Arvidsson, P. I. Angew. Chem., Int. Ed. 2017, 56, 4100.
(8) (a) Levchenko, E. S.; Derkach, N. Y.; Kirsanov, A. V. Zh. Obsh.
Khim. 1960, 30, 1971. (b) Levchenko, E. S.; Markovskii, L. N.;
Kirsanov, A. V. Zh. Org. Khim. 1967, 3, 1273; J. Org. Chem. USSR
1967, 3, 1439.
(9) (a) Johnson, C. R.; Jonsson, E. U.; Wambsgans, A. J. Org. Chem.
1979, 44, 2061. (b) Reggelin, M.; Zur, C. Synthesis 2000, 2000, 1.
(10) Roy, A. K.; Burns, G. T.; Lie, G. C.; Grigoras, S. J. Am. Chem.
Soc. 1993, 115, 2604.
(11) (a) Johnson, C. R.; Jonsson, E. U.; Bacon, C. C. J. Org. Chem.
1979, 44, 2055. (b) Maricich, T. J.; Jourdenais, R. A.; Albright, T. A. J.
Am. Chem. Soc. 1973, 95, 5831. (c) Challis, B. C.; Iley, J. N. J. Chem.
Soc., Perkin Trans. 2 1985, 2, 699.
(12) Maricich, T. J.; Allan, M. J.; Kislin, B. S.; Chen, A. I. T.; Meng, F.
C.; Bradford, C.; Kuan, N. C.; Wood, J.; Aisagbonhi, O.; Poste, A.;
Wride, D.; Kim, S.; Santos, T.; Fimbres, M.; Choi, D.; Elia, H.;
Kaladjian, J.; Abou-Zahr, A.; Mejia, A. Synthesis 2013, 45, 3361.
(13) Zenzola, M.; Doran, R.; Degennaro, L.; Luisi, R.; Bull, J. A.
Angew. Chem., Int. Ed. 2016, 55, 7203.
(14) Tota, A.; Zenzola, M.; Chawner, S. J.; St. John-Campbell, S.;
Carlucci, C.; Romanazzi, G.; Degennaro, L.; Bull, J. A.; Luisi, R. Chem.
Commun. 2017, 53, 348.
(15) Also see: (a) Lohier, J.-F.; Glachet, T.; Marzag, H.; Gaumont,
A.-C.; Reboul, V. Chem. Commun. 2017, 53, 2064. (b) Xie, Y.; Zhou,
D
Org. Lett. XXXX, XXX, XXX−XXX