Z. Bꢀeni et al. / Inorganic Chemistry Communications 7 (2004) 935–937
937
ligand is coplanar with the plane defined by the metal
core.
or from the Cambridge Crystallographic Data Centre,
12, Union Road, Cambridge, CH2 1EZ, UK [Fax: (in-
No further reaction occurs in the presence of excess
of organotin-hydride. Complex 1 is stable in solution for
several hours at room temperature and can be kept for
at least several weeks at +5 °C. Decomposition occurs
upon standing overnight in solution at room tempera-
ture, giving back the starting cluster and other uniden-
tified decomposition products.
References
[1] P.W. Frost, J.A.K. Howard, J.L. Spencer, D.G. Turner, J. Chem.
Soc., Chem. Commun. (1981) 1104.
The experiment was repeated with the starting cluster
containing PtBu3 as ligand, which has simpler 1H NMR
features. Ph3SnH reacts easily with this cluster as well,
but surprisingly a monomeric complex [PtH(SnPh3)
[2] P.L. Bellon, A. Cariotti, F. Demartin, G. Longoni, J. Chem. Soc.,
Dalton Trans. (1982) 1671.
[3] R.J. Goodfellow, E.M. Hamon, J.A.K. Howard, J.L. Spencer,
D.G. Turner, J. Chem. Soc., Chem. Commun. (1984) 1604.
[4] B.R. Lloyd, R.J. Puddephatt, J. Am. Chem. Soc. (1985)
7785.
3
CO(PtBu3)] (2) is obtained instead of the expected
hydrido-cluster similar to 1. Low temperature NMR
spectra did not give any indication of the formation of
the latter complex down to )90 °C.
[5] M.C. Jennings, N.C. Payne, R.J. Puddephatt, J. Chem. Soc.,
Chem. Commun. (1986) 1809.
The 1H NMR spectrum clearly indicates the presence
of a terminal hydride, presenting twelve lines centered at
)1.6 ppm. The central lines are doublet of doublets (2J(P–
[6] M.C. Jennings, N.C. Payne, R.J. Puddephatt, Inorg. Chem. (1987)
3776.
[7] D. Carmichael, P.B. Hitchcock, J.F. Nixon, A. Pidcock, J. Chem.
Soc., Chem. Commun. (1988) 1554.
2
H) ¼ )17.8 Hz and J(P–C) ¼ )2.3 Hz), flanked by sa-
[8] G. Douglas, L. Manojlovic, K.W. Muir, M.C. Jennings, B.R.
Lloyd, M. Rashidi, R.J. Puddephatt, J. Chem. Soc., Chem.
Commun. (1988) 149.
tellite peaks due to couplings with 195Pt (1J(Pt–H) ¼ 775
Hz) and 119Sn (2J(Sn–H) ¼ )36.7). The 1J(Pt–H) value is
in between the corresponding values in trans- and cis-
[PtH(SnPh3)(PCy3)2] (918 and 638 Hz, respectively)
found by Clark et al. [20]. The same comparison for
2J(Sn–H) values (698 and 26 Hz, respectively) rules out a
cis-Sn–H arrangement in 2. The 2J(P–H) value (17.8 Hz)
suggests a cis-arrangement of these two ligand as well,
while 2J(C–H) (54.4 Hz) indicates a possible trans-CO–H
arrangement. The coupling constants deduced from
13C{1H}, 31P{1H}, 195Pt{1H} and 119Sn{1H} NMR
spectra confirm the ligand arrangement suggested by 1H
NMR.
[9] M. Rashidi, R.J. Puddephatt, Organometallics 7 (1988) 1636.
[10] M.C. Jennings, G. Schoettel, S. Roy, R.J. Puddephatt, Organo-
metallics 10 (1991) 580.
[11] N.C. Payne, R. Ramachandran, G. Schoettel, J.J. Vittal, R.J.
Puddephatt, Inorg. Chem. 30 (1991) 4048.
[12] R. Ramachandran, D.S. Yang, N.C. Payne, R.J. Puddephatt,
Inorg. Chem. 31 (1992) 4236.
[13] R. Ramachandran, R.J. Puddephatt, Inorg. Chem. 32 (1993) 2256.
[14] K.-H. Dahmen, D. Imhof, L.M. Venanzi, Helv. Chim. Acta 77
(1994) 1029.
[15] P. Leoni, S. Manetti, M. Pasquali, A. Albinati, Inorg. Chem. 35
(1996) 6045.
[16] A. Fortunelli, P. Leoni, L. Marchetti, M. Pasquali, F. Sbrana, M.
Selmi, Inorg. Chem. (2001) 3055.
[17] A. Albinati, Inorg. Chim. Acta 22 (1977) L31.
[18] A. Albinati, G. Carturan, A. Musco, Inorg. Chim. Acta 16 (1976)
L3.
Supplementary material
[19] A. Moor, P.S. Pregosin, L.M. Venanzi, Inorg. Chim. Acta 48 (1981)
153.
CCD 238905 contains supplementary crystallo-
graphic data for this paper. These can be obtained free
[20] H.C. Clark, G. Ferguson, M.J. Hampden-Smith, H. Ruegger,
B.L. Ruh, Can. J. Chem. 66 (1988) 3120.
3
[Pt(SnPh3)CO(PtBu3)3H] (2). [Pt3l-CO)3(PtBu3)3] (69 mg, 0.054
mmol) was added to a CH2Cl2 solution (20 ml) of Ph3SnH (57 mg
0.162 mmol) and an immediate colour change from orange to pale
yellow was observed. The mixture was stirred for 20 min at room
temperature while reaction progress was monitored by IR spectros-
copy. Addition of heptane followed by concentration of the resulting
solution gave pale yellow microcrystals (0.75 g, 59.5%). Selected IR
data (cmꢁ1): CH2Cl2 solution m(CBO) 2001vs; m(Pt–H): 2116(s). Anal.
Calc. for C31H42OPSnPt: C, 47.95; H, 5.58. Found: C, 47.56; H, 5.76.
NMR data (d in ppm, J in Hz): d(H) ¼ )1.6; d(C) ¼ 197.2; d(P) ¼ 98;
d(Sn) ¼ )64.9; d(Pt) ¼ )5152; 1J(Pt–H) ¼ 775; 1J(Pt–P) ¼ 2372; 1J(Pt–
C) ¼ 1207; 1J(Pt–Sn) ¼ 8547; 2J(P–H) ¼ )17.8; 2J(C–H) ¼ )54.4;
2J(Sn–H) ¼ )36.7; 2J(P–C) ¼ )2.3; 2J(P–Sn) ¼ )1230; 2J(C–
Sn) ¼ )52.