10.1002/chem.201701402
Chemistry - A European Journal
COMMUNICATION
of 3red to undergo oxidation to 3ox which occurs under ambient
air, without the assistance of electron transfer mediator. In
addition, its catalytic efficiency is enhanced through the
participation of both tropolone scaffold and 4-hydroxy substituent
in directing the nucleophilic attack of the amine substrate at the
3-position of 3ox. Also, the presence of the active 4-hydroxy
group, which is engaged in an intramolecular hydrogen bond
with the imine nitrogen to form a highly reactive Schiff base CTS
(Scheme 2) is of overriding importance for the development of
the catalytic process.[20] The combination of all these elements
allows the oxidation of non-activated primary aliphatic amines
that until now remained challenging substrates for non-
enzymatic organocatalysts.
conditions, the active biomimetic organocatalyst 3ox and the
homocoupled imine intermediate, followed by dynamic
transimination. Noteworthy, the present organocatalytic cascade
reaction, which has been inspired by both purpurogallin
biosynthesis and copper amine oxidases activity, would not be
easily conceivable at this level of complexity from first chemical
concepts.
Acknowlegments
The authors would like to thank CNRS and Paris Descartes
University for financial support
Keywords: biomimetics • cross-coupling • imines • organocatalysis • primary
Table 1. Insight into the substrate scope of the 3ox-mediated aerobic oxidative
amines
cross-coupling of amines.
[1]
[2]
[3]
[4]
For a review, see: J. Piera, J.-E. Bäckvall, Angew. Chem. 2008, 120,
35583576; Angew. Chem. Int. Ed. 2008, 47, 35063523.
For a review, see : L. Que Jr; W. B. Tolman, Nature 2008, 455,
333340
S. M. Janes, D. Mu, D. Wemmer, A. J. Smith, S. Kaur, D. Maltby, A.L.
Burlingame, J. P. Klinman, Science, 1990, 248, 981987.
For a review, see: J. P. Klinman, F. Bonnot, Chem. Rev. 2014, 114,
43434365.
[5]
[6]
E. M. Shepard, D. M. Dooley, Acc. Chem. Res. 2015, 48, 12181226.
For a review, see: a) M. Mure, Acc. Chem. Res. 2004, 37, 131139.
See also: b) Y. Lee, L. M. Sayre, J. Am. Chem. Soc. 1995, 117,
30963105; c) M. Mure, J. P. Klinman, J. Am. Chem. Soc. 1995, 117,
86988706; d) M. Mure, J. P. Klinman, J. Am. Chem. Soc. 1995, 117,
87078718; e) Y. Lee, L. M. Sayre, J. Am. Chem. Soc. 1995, 117,
1182311828; f) K. Q. Ling, J. Kim, L. M. Sayre, J. Am. Chem. Soc.
2001, 123, 96069611; g) M. Mure, S. A. Mills, J. P. Klinman,
Biochemistry, 2002, 41, 92699278.
[7]
For a comprehensive recent review, see: a) B. Chen, L. Wang, S. Gao,
ACS catal. 2015, 5, 58515876; see also b) M. T. Schümperli, C.
Hammond, I. Hermans, ACS Catal. 2012, 2, 11081117; c) R. D. Patil,
S. Adimurthy, Asian J. Org. Chem. 2013, 2, 726744; d) M. Largeron,
Eur. J. Org. Chem. 2013, 52255235; e) X. Lang, W. Ma, C. Chen, H. Ji,
J. Zhao, Acc. Chem. Res. 2014, 47, 355363; f) X. Lang, X. Chen, J.
Zhao, Chem. Soc. Rev. 2014, 43, 473486; g) B. L. Ryland, S. S. Stahl,
Angew. Chem. Int. Ed. 2014, 53, 88248838; Angew. Chem. 2014, 126,
89688983.
[8]
[9]
M. Largeron, M. –B. Fleury, Science, 2013, 339, 4344.
For a comprehensive recent review, see: A. E. Wendlandt, S. S. Stahl,
Angew. Chem. 2015, 127, 1484814869; Angew. Chem. Int. Ed. 2015,
54, 1463814658.
[10]
A.E. Wendland, S. S. Stahl, Org. Lett. 2012, 14, 28502853.
[11] Y. Qin, L. Zhang, J. Lv, S. Luo, J.-P. Cheng, Org. Lett. 2015, 17,
14691472.
[12] H. Yuan, W.-J. Yoo, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc.
2012, 134, 1397013973.
[13] D. V. Jawale, E. Gravel, N. Shah, V. Dauvois, H. Li, I. N. N.
Namboothiri, E. Doris, Chem. Eur. J. 2015, 21, 70397042.
[14] Y. Lee, K. -Q. Ling, X. Lu, R. B. Silverman, E. M. Shepard, D. M.
Dooley, L. M. Sayre, J. Am. Chem. Soc. 2002, 124, 1213512143.
[15] a) A. E. Wendlandt, S. S. Stahl, J. Am. Chem. Soc. 2014, 136,
506512; b) A. E. Wendlandt, S. S. Stahl, J. Am. Chem. Soc. 2014, 136,
1191011913.
[16] V. J. Klema, C. J. Solheid, J. P. Klinman, C. M. Wilmot, Biochemistry,
2013, 52, 22912301.
[17] M. Largeron, A. Chiaroni, M.-B. Fleury, Chem. Eur. J. 2008, 14,
9961003.
In summary, we have developed
a
bioinspired
organocatalytic cascade reaction for the activation of the -C-H
bond of primary amines which are converted to cross-coupled
imines under exceptionally mild conditions. The reaction
sequence starts from inexpensive commercially available
pyrogallol 1red and allows, under ambient air, the in situ
formation of not easily accessible natural purpurogallin 2red
which is further engaged in the CuAOs enzymatic
transamination process for producing, under single turnover
This article is protected by copyright. All rights reserved.