Bio-Environmental Chemistry’’ from the Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan (to S.F.).
Notes and references
1 (a) P. R. Ortiz de Montellano, Cytochrome P450: Structure,
Mechanism, and Biochemistry, Kluwer Academic/Plenum
Publishers, New York, 2005, 3rd edn; (b) I. G. Denisov,
T. M. Makris, S. G. Sligar and I. Schlichting, Chem. Rev., 2005,
105, 2253; (c) B. Meunier, S. P. de Visser and S. Shaik, Chem. Rev.,
2004, 104, 3947.
2 T. M. Makris, K. von Koenig, I. Schlichting and S. G. Sligar,
J. Inorg. Biochem., 2006, 100, 507.
3 (a) R. van Eldik, Coord. Chem. Rev., 2007, 251, 1649; (b) W. Nam,
Acc. Chem. Res., 2007, 40, 522; (c) Y. Watanabe, H. Nakajima and
T. Ueno, Acc. Chem. Res., 2007, 40, 554; (d) J. T. Groves, Proc.
Natl. Acad. Sci. U. S. A., 2003, 100, 3569; (e) H. Fujii, Coord.
Chem. Rev., 2002, 226, 51.
Scheme 1 Proposed mechanism of the hydride transfer from AcrH2
to a manganese(V)–oxo porphyrin complex.
4 B. Meunier, A. Robert, G. Pratviel and J. Bernadou, in The
Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and
R. Guilard, Academic Press, San Diego, 2000, vol. 4, ch. 31,
pp. 119–187.
5 (a) J. T. Groves, J. Lee and S. S. Marla, J. Am. Chem. Soc., 1997,
119, 6269; (b) N. Jin and J. T. Groves, J. Am. Chem. Soc., 1999,
121, 2923.
6 W. J. Song, M. S. Seo, S. D. George, T. Ohta, R. Song,
M.-J. Kang, T. Tosha, T. Kitagawa, E. I. Solomon and
W. Nam, J. Am. Chem. Soc., 2007, 129, 1268.
7 (a) N. Jin, M. Ibrahim, T. G. Spiro and J. T. Groves, J. Am. Chem.
Soc., 2007, 129, 12416; (b) Z. Gross, Angew. Chem., Int. Ed., 2008,
47, 2737.
8 (a) D. Lahaye and J. T. Groves, J. Inorg. Biochem., 2007, 101,
1786; (b) N. Jin, J. L. Bourassa, S. C. Tizio and J. T. Groves,
Angew. Chem., Int. Ed., 2000, 39, 3849.
9 (a) R. Zhang, J. H. Horner and M. Newcomb, J. Am. Chem. Soc.,
2005, 127, 6573; (b) R. Zhang and M. Newcomb, J. Am. Chem.
Soc., 2003, 125, 12418.
10 W. Nam, I. Kim, M. H. Lim, H. J. Choi, J. S. Lee and H. G. Jang,
Chem.–Eur. J., 2002, 8, 2067.
11 Y. Shimazaki, T. Nagano, H. Takesue, B.-H. Ye, F. Tani and
Y. Naruta, Angew. Chem., Int. Ed., 2004, 43, 98.
Scheme 1 shows that the final products formed in the
hydride transfer from AcrH2 to [Mn(V)(O)2(Porp)]ꢀ are
[Mn(III)(OH)2(Porp)]ꢀ and 10-methylacridinium ion (AcrH+).
Although we have observed the conversion of 1 to the starting
manganese(III) complex in the reaction of 1 and AcrH2, we did
not observe the formation of AcrH+, which should exhibit an
absorption band at 357 nm in the UV-Vis spectrum
(Fig. 1).12,18 Since no detection of AcrH+ might be due to
the instability of the AcrH+ ion in the presence of OHꢀ, we
carried out a control reaction by adding OHꢀ to a solution
containing AcrH+. As we expected, the AcrH+ ion was
converted to AcrH(OH) immediately with a rate of 4 108 sꢀ1
(ESI, Fig. S2aw), followed by the slow conversion of AcrH(OH)
to Acr(O) (ESI, Fig. S2b) [eqn (1)].19 Thus, we carried out the
reaction of 1 and AcrH2 and confirmed that Acr(O) was formed
as the final product by analyzing product(s) with 1H NMR after
column chromatography (ESI, Fig. S3w).19
12 S. Fukuzumi, Y. Tokuda, T. Kitano, T. Okamoto and J. Otera,
J. Am. Chem. Soc., 1993, 115, 8960.
13 Y. M. Goh and W. Nam, Inorg. Chem., 1999, 38, 914.
14 Y. J. Jeong, Y. Kang, A.-R. Han, Y.-M. Lee, H. Kotani,
S. Fukuzumi and W. Nam, Angew. Chem., Int. Ed., 2008, 47, 7321.
15 (a) S. Fukuzumi, S. Koumitsu, K. Hironaka and T. Tanaka, J. Am.
Chem. Soc., 1987, 109, 305; (b) S. Fukuzumi, K. Ohkubo,
Y. Tokuda and T. Suenobu, J. Am. Chem. Soc., 2000, 122, 4286.
16 (a) S. Fukuzumi, O. Inada and T. Suenobu, J. Am. Chem. Soc.,
2002, 124, 14538; (b) S. Fukuzumi, O. Inada and T. Suenobu,
J. Am. Chem. Soc., 2003, 125, 4808.
17 Although it has been proposed from DFT studies that trans-
dioxomanganese(V) porphyrins are unreactive and their
protonated species, such as OQMn(V)–OH and OQMn(V)–OH2,
are active oxidants in oxidation reactions, the nature of the active
Mn(V)–oxo species is still ambiguous and remains elusive:
(a) D. Balcells, C. Raynaud, R. H. Crabtree and O. Eisenstein,
Chem. Commun., 2008, 744; (b) F. De Angelis, N. Jin, R. Car and
J. T. Groves, Inorg. Chem., 2006, 45, 4268; (c) S. P. de Visser,
F. Ogliaro, Z. Gross and S. Shaik, Chem.–Eur. J., 2001, 7, 4954.
18 (a) S. Fukuzumi, K. Okamoto, Y. Tokuda, C. P. Gros and
R. Guilard, J. Am. Chem. Soc., 2004, 126, 17059; (b) J. Yuasa,
S. Yamada and S. Fukuzumi, Angew. Chem., Int. Ed., 2008, 47,
1068.
ð1Þ
In conclusion, we have reported the first example of
the oxidation of NADH analogues by manganese(V)–oxo
porphyrin complexes. We have demonstrated that hydride
transfer from a series of NADH analogues to Mn(V)–oxo
species proceeds via PCET, followed by rapid electron trans-
fer, rather than one-step hydride transfer. Other mechanistic
aspects, such as porphyrin ligand effect and KIE, have also been
discussed in the oxidation of NADH analogues by Mn(V)–oxo
porphyrin complexes.
This research was supported by the Korea Science and
Engineering Foundation and the Ministry of Science and
Technology of Korea through CRI Program (to W.N.), a
Grant-in-Aid (No. 19205019 to S.F.), and a Global COE
program, ‘‘the Global Education and Research Centre for
19 (a) S. Fukuzumi, M. Fujita and J. Otera, J. Org. Chem., 1993, 58,
5405; (b) T. Matsuo and J. M. Mayer, Inorg. Chem., 2005, 44, 2150.
ꢂc
This journal is The Royal Society of Chemistry 2009
706 | Chem. Commun., 2009, 704–706