LETTER
Synthesis of Chiral g-Amino-b-hydroxyphosphonate Derivatives
2507
OH
OH
Acknowledgment
O
O
H2, Pd-C
This work was supported by a Grant-in-Aid for Scientific Research
from the Ministry of Education, Culture, Sports, Science, and
Technology, Japan.
Me
OH
P(OBn)2
Me
P(OH)2
OH
7b
8
1) TMSBr
2) MeOH
3b
8
References
(1) Golay, A.; Swislocki, A. L. M.; Chen, Y. D.; Reaven, G. M.
Metabolism 1987, 36, 692.
Scheme 5
(2) McGarry, J. D.; Brown, N. F. Eur. J. Biochem. 1997, 244, 1.
(3) For a review, see: Giannessi, F. Drugs Future 2003, 28, 371.
(4) (a) Giannessi, F.; Chiodi, P.; Marzi, M.; Minetti, P.;
Pessotto, P.; De Angelis, F.; Tassoni, E.; Conti, R.; Giorgi,
F.; Mabilia, M.; Dell’Uomo, N.; Muck, S.; Tinti, M. O.;
Carminati, P.; Arduini, A. J. Med. Chem. 2001, 44, 2383.
(b) Giannessi, F.; Pessotto, P.; Tassoni, E.; Chiodi, P.; Conti,
R.; De Angelis, F.; Dell’Uomo, N.; Catini, R.; Deias, R.;
Tinti, M. A.; Carminati, P.; Arduini, A. J. Med. Chem. 2003,
46, 303.
Having achieved the preparation of chiral b,g-dihydroxy-
phosphonates, we next focused on their transformation
into g-amino-b-hydroxyphosphonate derivatives via cy-
clic sulfates (Scheme 6).15 Treatment of 7b with SOCl2,
16
followed by oxidation with RuCl3–NaIO4 afforded cy-
clic sulfate 9 in 89% yield. Ring-opening of 9 with NaN3
in acetone–H2O and subsequent treatment with 20%
H2SO4 gave a mixture of g-azide 10 and b-azide 11 in a ra-
tio of 5:1 (42% yield). Although the exact reason for the
g-selectivity has remained unclear, it might be associated
with the steric congestion at the b-position by the bulky
dibenzyl phosphonate moiety. After the mixture of 10 and
11 was converted into the TES ether, Staudinger reaction
with PPh3 and subsequent hydrolysis were performed. At
this stage, g-amino-b-siloxyphosphonate 12 in pure form
was provided in 61% yield after column chromatography
on silica gel.17,18 Compound 12 would be a useful inter-
mediate for transforming phosphonic acid analogues of
carnitine.
(5) (a) Ordóñez, M.; González-Morales, A.; Ruiz, C.; De la
Cruz-Cordero, R.; Fernández-Zertuche, M. Tetrahedron:
Asymmetry 2003, 14, 1775. (b) Mikolajczyk, M.; Luczak, J.;
Kielbasinski, P. J. Org. Chem. 2002, 67, 7872.
(c) Wróblewski, A. E.; Halajewska-Wosik, A. Eur. J. Org.
Chem. 2002, 2758. (d) Tadeusiak, E.; Krawiecka, B.;
Michalski, J. Tetrahedron Lett. 1999, 40, 1791.
(e) Ordóñez, M.; De la Cruz, R.; Fernández-Zertuche, M.;
Muñoz-Hernández, M.-A. Tetrahedron: Asymmetry 2002,
13, 559. (f) Thomas, A. A.; Sharpless, K. B. J. Org. Chem.
1999, 64, 8379.
(6) For a review, see: Kolb, H. C.; van Nieuwenhze, M. S.;
Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
(7) (a) Yokomatsu, T.; Yoshida, Y.; Suemune, K.; Yamagishi,
T.; Shibuya, S. Tetrahedron: Asymmetry 1995, 6, 365.
(b) Yokomatsu, T.; Yamagishi, T.; Suemune, K.; Yoshida,
Y.; Shibuya, S. Tetrahedron 1998, 54, 767.
(8) Lohray and co-workers reported similar AD reactions
independently. See: Lohray, B. B.; Maji, D. K.; Nandanan,
E. Indian J. Chem., Sect. B 1995, 34, 1023.
O
O
O
O
OH
S
1) SOCl2, pyridine
O
Me
P(OBn)2
2) RuCl3, NaIO4
(89%, 2 steps)
OH
Me
P(O)(OBn)2
7b
9
(9) Yokomatsu, T.; Yamagishi, T.; Sada, T.; Suemune, K.;
Shibuya, S. Tetrahedron 1998, 54, 781.
OH
N3
(10) The 1.4 g of AD-mix-a, purchased from Aldrich, was used
for conversion of 1.0 mmol of the olefin, which contained
0.2 mol% of K2OsO4·2H2O and 1.0 mol% of chiral ligand
(DHQ)2PHAL. However, an additional K2OsO4·2H2O (0.8
mol%) was critical for AD reactions of b,g-unsaturated
phosphonates since the AD reaction of 2b in the absence of
the osmium salt resulted in slow reaction rates (20 h at
25 °C) and slight decrease in enantioselectivity (54% yield,
30% ee).
O
1) NaN3
O
+
Me
P(OBn)2
Me
P(OBn)2
2) H2SO4
N3
OH
(42%, 2 steps)
10
11
10:11=5:1
1) TESCl,
imidazole
H2N
Me
O
(11) Compound 3c: oil; [a]D26 –2.14 (c 1.03, MeOH). 1H NMR
(400 MHz, CDCl3): d = 7.97 (2 H, d, J = 8.8 Hz), 6.87 (2 H,
d, J = 8.8 Hz), 4.38 (2 H, d, J = 5.8 Hz), 4.09 (4 H, q, J = 6.9
Hz), 4.05–4.00 (1 H, m), 3.87–3.85 (1 H, m), 3.82 (3 H, s),
2.22–1.96 (2 H, m), 1.29 (6 H, t, J = 7.0 Hz). 13C NMR (100
MHz, CDCl3): d = 166.4, 163.5, 131.7, 122.2, 113.6, 72.4 (d,
P(OBn)2
2) PPh3
3) H2O
OTES
(61%, 3 steps)
12
Scheme 6
J
PC = 14.9 Hz), 66.8 (d, JPC = 4.5 Hz), 65.5, 62.1 (d,
PC = 3.2 Hz), 55.4, 30.1 (d, JPC = 140.0 Hz), 16.3 (d,
J
In conclusion, we have developed a new method for pre-
paring a protected form of chiral g-amino-b-hydroxy-
phosphonates through AD reactions of b,g-unsaturated
phosphonates. A study on transforming optically active g-
amino-b-siloxyphosphonates into phosphonic acid ana-
logues of carnitine is under progress and will be the
subject of future reports.
JPC = 5.9 Hz). 31P NMR (162 MHz, CDCl3): d = 29.36. IR
(neat): 3356, 1713, 1258, 1168 cm–1. ESI-MS: m/z = 399
[MNa+]. HRMS: m/z calcd for C16H25O8NaP [MNa+]:
399.1185. Found: 399.1185.
(12) (a) Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem.
Soc. 1995, 117, 10805. (b) Corey, E. J.; Noe, M. C.;
Guzman-Perez, A. J. Am. Chem. Soc. 1995, 117, 10817.
Synlett 2004, No. 14, 2505–2508 © Thieme Stuttgart · New York