Organic Letters
Letter
E.; Singaram, B.; Kabalka, G. W.; Soderquist, J. A. Org. Lett. 2015,
17, 4368.
(2) (a) Canales, E.; Prasad, K. G.; Soderquist, J. A. J. Am. Chem.
Soc. 2005, 127, 11572. (b) Canales, E.; Hernan
A. J. Am. Chem. Soc. 2006, 128, 8712. (c) Hernan
H.; Alicea, E.; Soderquist, J. A. Org. Lett. 2006, 8, 4089. (d) Munoz-
́
dez, E.; Soderquist, J.
́
dez, E.; Burgos, C.
̃
́
Hernandez, L.; Seda, L. A.; Wang, B.; Soderquist, J. A. Org. Lett.
2014, 16, 4052.
(3) (a) Ramadhar, T. R.; Batey, R. A. Synthesis 2011, 2011, 1321.
For recent developments in the propargylaton of imines, see:
(b) Mszar, N. W.; Haeffner, F.; Hoveyda, A. H. J. Am. Chem. Soc.
2014, 136, 3362. (c) Wu, H.; Haeffner, F.; Hoveyda, A. H. J. Am.
Chem. Soc. 2014, 136, 3780. (d) Wisniewska, H. M.; Jarvo, E. R.
Chem. Sci. 2011, 2, 807. (e) Osborne, C. A.; Endean, T. B. D.; Jarvo,
E. R. Org. Lett. 2015, 17, 5340. (f) Fandrick, D. R.; Hart, C. R.;
Okafor, I. S.; Mercadante, M. A.; Sanyal, S.; Masters, J. T.;
Sarvestani, M.; Fandrick, K. R.; Stockdill, J. L.; Grinberg, N.;
(12) 1H NMR and 13C NMR spectroscopic data for these
carbamate rotomers were previously reported: Zuend, S. J.;
Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N. Nature 2009,
461, 968.
(13) Cilibrizzi, A.; Schepetkin, I. A.; Bartolucci, G.; Crocetti, L.; Dal
Piaz, V.; Giovannoni, M. P.; Graziano, A.; Kirpotina, L. N.; Quinn,
M. T.; Vergelli, C. Bioorg. Med. Chem. 2012, 20, 3781.
(14) Chen, G.-M.; Brown, H. C. J. Am. Chem. Soc. 2000, 122, 4217.
Gonnella, N.; Lee, H.; Senanayake, C. H. Org. Lett. 2016, 18, 6192.
(4) (a) Yus, M.; Gonzalez-Gomez, J. C.; Foubelo, F. Chem. Rev.
2013, 113, 5595. (b) Lachance, H.; Hall, D. G. Org. React. 2009, 73,
1. Chen, G.-M.; Brown, H. C. J. Am. Chem. Soc. 2000, 122, 4217.
(5) (a) Wang, K. K.; Nikam, S. S.; Ho, C. D. J. Org. Chem. 1983,
48, 5376. (b) Brown, H. C.; Khire, U. R.; Narla, G. J. Org. Chem.
1995, 60, 8130.
(6) Nikam, S. S.; Wang, K. K. J. Org. Chem. 1985, 50, 2193.
(7) Watanabe, K.; Kuroda, S.; Yokoi, A.; Ito, K.; Itsuno, S. J.
Organomet. Chem. 1999, 581, 103.
(8) For alternative methods for the asymmetric allylation of imines,
see: (a) Chen, G.; Ramachandran, P. V.; Brown, H. C. Angew. Chem.,
Int. Ed. 1999, 38, 825. (b) Fukuhara, K.; Okamoto, S.; Sato, F. Org.
Lett. 2003, 5 (12), 2145. (c) Chen, J. L.-Y.; Aggarwal, V. K. Angew.
Chem., Int. Ed. 2014, 53, 10992 and references cited therein. (d) Van
der Mei, F. W.; Miyamoto, H.; Silverio, D. L.; Hoveyda, A. H.
Angew. Chem., Int. Ed. 2016, 55, 4701. (e) Huang, Y.-Y.; Chakrabarti,
A.; Morita, N.; Schneider, U.; Kobayashi, S. Angew. Chem., Int. Ed.
2011, 50, 11121.
(9) We view this methanolysis process as occurring in a stepwise
manner analogous to our conclusions based upon studies on the
related allylboration process:1d This differs from the originally
proposed termolecular process.14 Thus, the 2R/MeOH adduct A is
deprotonated by 5, which gives B, which is attacked at aluminum by
C to give DIBAL-OMe and the syn N-H aldimine, which adds to 2R
to give 6.
(10) Ahlbrecht, H.; Duber, E.-O. Synthesis 1982, 1982, 273.
(11) We view the tautomerism of 10 to provide 11 as occurring
through the stepwise process as illustrated below. Deprotonation of
10 by 5 gives D and E. The protonation of E by D followed by
complexation provides 11.
D
Org. Lett. XXXX, XXX, XXX−XXX