Organic Letters
Letter
(5) Hashmi, A. S. K. Transition Metal-Catalyzed Cycloisomeriza-
tions of Allenes. In Modern Allene Chemistry; Wiley-VCH: Weinheim,
Germany, 2004.
over, blue-light irradiation of aryl diazoacetate with cis-stilbene
led to the diastereoselective cyclopropanation reaction
(Scheme 5B).
This outcome is typical for singlet carbene species, as
cyclopropanations engaging triplet carbenes are believed to be
two-step processes with a loss of stereospecifity.45 Con-
sequently, the predominant generation of singlet carbenes in
the reaction course is assumed.
́
(6) Lopez, F.; Mascarenas, J. L. Chem. Soc. Rev. 2014, 43, 2904.
̃
(7) Kitagaki, S.; Inagaki, F.; Mukai, C. Chem. Soc. Rev. 2014, 43,
2956.
(8) Murakami, M.; Matsuda, T. Cycloadditions of Allenes. In
Modern Allene Chemistry; Wiley-VCH: Weinheim, Germany, 2004.
(9) Ma, S. Pure Appl. Chem. 2006, 78, 197.
In summary, we have shown that the Doyle−Kirmse
reaction of propargyl sulfides with diazo compounds can be
induced by visible light and does not require any catalyst. Our
method enables the synthesis of a broad range of highly
functionalized allenes in good to excellent yield under mild
reaction conditions.
Mechanistic considerations support the involvement of
singlet carbenes that react with propargyl sulfides, forming
ylides. The subsequent [2,3]-sigmatropic rearrangement leads
to allenes. Our investigations contribute to broadening the
knowledge of visible-light-induced processes employing diazo
compounds, as only comprehensive studies will fulfill this
research area.
(10) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem.
Rev. 2000, 100, 3067.
(11) Zimmer, R.; Reissig, H.-U. Transition Metal-Catalyzed Cross
Couplings of Allenes. In Modern Allene Chemistry; Wiley-VCH:
Weinheim, Germany, 2004.
(12) Ye, J.; Ma, S. Org. Chem. Front. 2014, 1, 1210.
̈
(13) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2002,
41, 2933.
(14) Burger, A.; Roussel, J.-P.; Hetru, C.; Hoffmann, J. A.; Luu, B.
Tetrahedron 1989, 45, 155.
(15) Zemlicka, J. Nucleosides Nucleotides 1997, 16, 1003.
(16) Sydnes, L. K. Chem. Rev. 2003, 103, 1133.
(17) Bayeh-Romero, L.; Buchwald, S. L. J. Am. Chem. Soc. 2019, 141,
13788.
̈
(18) Scheipers, I.; Muck-Lichtenfeld, C.; Studer, A. Angew. Chem.,
Int. Ed. 2019, 58, 6545.
ASSOCIATED CONTENT
* Supporting Information
■
(19) Lo, V. K-Y.; Wong, M.-K.; Che, C.-M. Org. Lett. 2008, 10, 517.
(20) Davies, P. W.; Albrecht, S. J. C.; Assanelli, G. Org. Biomol.
Chem. 2009, 7, 1276.
(21) Zhang, X.; Ma, M.; Wang, J. Tetrahedron: Asymmetry 2003, 14,
891.
S
The Supporting Information is available free of charge at
Full description of optimization and mechanistic studies,
general procedure for [2,3]-sigmatropic rearrangement
to allenes, UV−vis spectra of aryl diazocarbonyl
compounds, compound characterization (NMR,
HRMS, AE), and NMR spectra (PDF)
(22) Holzwarth, M. S.; Alt, I.; Plietker, B. Angew. Chem., Int. Ed.
2012, 51, 5351.
(23) Ma, M.; Peng, L.; Li, C.; Zhang, X.; Wang, J. J. Am. Chem. Soc.
2005, 127, 15016.
(24) Li, Z.; Boyarskikh, V.; Hansen, J. H.; Autschbach, J.; Musaev,
D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 15497.
(25) Jia, M.; Ma, S. Angew. Chem., Int. Ed. 2016, 55, 9134.
(26) Moss, R. A.; Doyle, M. P. Contemporary Carbene Chemistry;
John Wiley & Sons, Inc.: Hoboken, NJ, 2013.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
́
(27) Ciszewski, Ł. W.; Rybicka-Jasinska, K.; Gryko, D. Org. Biomol.
Chem. 2019, 17, 432.
́
(28) Rybicka-Jasinska, K.; Shan, W.; Zawada, K.; Kadish, K. M.;
Gryko, D. J. Am. Chem. Soc. 2016, 138, 15451.
́
(29) Rybicka-Jasinska, K.; Orłowska, K.; Karczewski, M.; Zawada,
́
K.; Gryko, D. Eur. J. Org. Chem. 2018, 2018, 6634.
(30) Ciszewski, Ł. W.; Durka, J.; Gryko, D. Org. Lett. 2019, 21, 7028.
(31) Wang, Z.; Herraiz, A. G.; del Hoyo, A. M.; Suero, M. G. Nature
2018, 554, 86.
Author Contributions
§K. O. and K.R.-J. contributed equally.
Notes
(32) Jurberg, I. D.; Davies, H. M. L. Chem. Sci. 2018, 9, 5112.
(33) Guo, Y.; Nguyen, T. V.; Koenigs, R. M. Org. Lett. 2019, 21,
8814.
(34) Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R.
M. Angew. Chem., Int. Ed. 2019, 58, 1203.
The authors declare no competing financial interest.
(35) Nagode, S. B.; Kant, R.; Rastogi, N. Org. Lett. 2019, 21, 6249.
(36) Xiao, T.; Mei, M.; He, Y.; Zhou, L. Chem. Commun. 2018, 54,
8865.
(37) Empel, C.; Patureau, F. W.; Koenigs, R. M. J. Org. Chem. 2019,
84, 11316.
(38) He, F.; Koenigs, R. Chem. Commun. 2019, 55, 4881.
(39) Yang, Z.; Guo, Y.; Koenigs, R. M. Chem. - Eur. J. 2019, 25,
6703.
(40) Yang, J.; Wang, J.; Huang, H.; Qin, G.; Jiang, Y.; Xiao, T. Org.
Lett. 2019, 21, 2654.
(41) Kirmse, W.; Kapps, M. Chem. Ber. 1968, 101, 994.
(42) Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J. Org. Chem. 1981,
46, 5094.
(43) Roth, H. D.; Manion, M. L. J. Am. Chem. Soc. 1975, 97, 779.
(44) Roth, H. D. Acc. Chem. Res. 1977, 10, 85.
(45) Moss, R. A.; Dolling, U.-H. J. Am. Chem. Soc. 1971, 93, 954.
ACKNOWLEDGMENTS
■
Financial support for this work was supported by the Ministry
of Science and Higher Education (K.O., grant no. 0132/DIA/
2017/46) and the Foundation for Polish Sciences (D.G., grant
no. FNP TEAM POIR.04.04.00-00-4232/17-00). We extend
our gratitude to Dr. Olga Staszewska-Krajewska (Institute of
Organic Chemistry, PAS) for NOE experiments.
REFERENCES
■
(1) Krause, N.; Hashmi, A. S. K. Modern Allene Chemistry; Wiley-
VCH: Weinheim, Germany, 2004.
(2) Alcaide, B.; Almendros, P. Chem. Soc. Rev. 2014, 43, 2886.
̈
(3) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43,
1196.
(4) Gockel, B.; Krause, N. Org. Lett. 2006, 8, 4485.
D
Org. Lett. XXXX, XXX, XXX−XXX