Journal of the American Chemical Society
Communication
Synthesis of polysubstituted β-amino cyclohexane carboxylic acids via
Diels−Alder reaction using Ni(II)-complex stabilized β-alanine
derived dienes. Amino Acids 2013, 44 (2), 791−796. (b) Danishefsky,
S.; Kitahara, T. Useful diene for the Diels-Alder reaction. J. Am. Chem.
Soc. 1974, 96 (25), 7807−7808. (c) Corey, E. J. Catalytic
Enantioselective Diels−Alder Reactions: Methods, Mechanistic
Fundamentals, Pathways, and Applications. Angew. Chem., Int. Ed.
2002, 41 (10), 1650−1667.
(4) (a) Stalzer, M. M.; Nicholas, C. P.; Bhattacharyya, A.; Motta, A.;
Delferro, M.; Marks, T. J. Single-Face/All-cis Arene Hydrogenation
by a Supported Single-Site d0 Organozirconium Catalyst. Angew.
Chem., Int. Ed. 2016, 55 (17), 5263−5267. (b) Peters, B. K.; Liu, J.;
Margarita, C.; Rabten, W.; Kerdphon, S.; Orebom, A.; Morsch, T.;
Andersson, P. G. Enantio- and Regioselective Ir-Catalyzed Hydro-
genation of Di- and Trisubstituted Cycloalkenes. J. Am. Chem. Soc.
2016, 138 (36), 11930−11935. (c) Wang, Y.; Cui, X.; Deng, Y.; Shi,
F. Catalytic hydrogenation of aromatic rings catalyzed by Pd/NiO.
RSC Adv. 2014, 4 (6), 2729−2732. (d) Wiesenfeldt, M. P.; Nairoukh,
Z.; Dalton, T.; Glorius, F. Selective Arene Hydrogenation for Direct
Access to Saturated Carbo- and Heterocycles. Angew. Chem., Int. Ed.
2019, 58 (31), 10460−10476. (e) Wang, D.-S.; Chen, Q.-A.; Lu, S.-
M.; Zhou, Y.-G. Asymmetric Hydrogenation of Heteroarenes and
Arenes. Chem. Rev. 2012, 112 (4), 2557−2590.
(5) (a) Wurtz, A. Ueber eine neue Klasse organischer Radicale.
Justus Liebigs Annalen der Chemie 1855, 96 (3), 364−375. (b) Lamp-
man, G. M.; Aumiller, J. C. Bicyclo[1.1.0]Butane. Org. Synth. 1971,
51, 55.
(6) (a) Schneider, T. F.; Kaschel, J.; Werz, D. B. A New Golden Age
for Donor−Acceptor Cyclopropanes. Angew. Chem., Int. Ed. 2014, 53
(22), 5504−5523. (b) Ma, W.; Fang, J.; Ren, J.; Wang, Z. Lewis Acid
Catalyzed Formal Intramolecular [3 + 3] Cross-Cycloaddition of
Cyclopropane 1,1-Diesters for Construction of Benzobicyclo[2.2.2]-
octane Skeletons. Org. Lett. 2015, 17 (17), 4180−4183.
importance of substituted-cycloalkane structures, further
developments of this novel catalytic synthesis using a
combination of molecular design and reaction engineering
appear very promising.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Detailed description of synthetic protocol, full analytical
data, and additional information regarding mechanistic
AUTHOR INFORMATION
Corresponding Author
■
ORCID
́
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The studies were performed as part of our activities in the
framework of the “Fuel Science Center” funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy − Ex-
zellenzcluster 2186, The Fuel Science Center“ ID: 390919832.
A.K. thanks the Erasmus Mundus Action 1 Programme
(FPA2013- 0037) “SINCHEM” for a stipend. We are thankful
to David A. Kuß for performing the DFT calculation. We
gratefully acknowledge the CPE Lyon, its sustainable develop-
ment chair, CNRS, and University of Lyon 1 for the support,
the experimental infrastructure, and the internship of L.-L.G.
(7) (a) Schick, H.; Roatsch, B.; Schwarz, H.; Hauser, A.; Schwarz, S.
Syntheses and Reactions of 2,2-Disubstituted Cyclopentane-1,3-
diones, 6. Conversion of 2-Methylcyclopentane-1,3-dione into 5-
Methylcycloheptane-1,4-dione via 3-(1-Methyl-2,5-dioxocyclopentyl)-
propanal. Liebigs Ann. Chem. 1992, 1992 (5), 419−422. (b) Jung, M.
E. 1.1 - Stabilized Nucleophiles with Electron Deficient Alkenes and
Alkynes. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon: Oxford, 1991; pp 1−67.
(8) (a) Oppolzer, W. The intramolecular [2 + 2] photoaddition/
cyclobutane-fragmentation sequence in organic synthesis. Acc. Chem.
Res. 1982, 15 (5), 135−141. (b) De Mayo, P. Photochemical
syntheses. 37. Enone photoannelation. Acc. Chem. Res. 1971, 4 (2),
41−47.
REFERENCES
■
(1) (a) Xia, G.; Han, X.; Lu, X. Pd(II)-Catalyzed One-Step
Construction of Cycloalkane-Fused Indoles and Its Application in
Formal Synthesis of ( )-Aspidospermidine. Org. Lett. 2014, 16 (7),
2058−2061. (b) Banerjee, A.; Sarkar, S.; Patel, B. K. C−H
functionalisation of cycloalkanes. Org. Biomol. Chem. 2017, 15 (3),
505−530. (c) Bravo, L.; Mico, J. A.; Berrocoso, E. Discovery and
development of tramadol for the treatment of pain. Expert Opin.
Expert Opin. Drug Discovery 2017, 12 (12), 1281−1291. (d) Goude-
dranche, S.; Raimondi, W.; Bugaut, X.; Constantieux, T.; Bonne, D.;
Rodriguez, J. Enantioselective Organocatalyzed Domino Synthesis of
Six-Membered Carbocycles. Synthesis 2013, 45 (14), 1909−1930.
(e) Ansell, M. F. Supplements to the 2nd Edition of Rodd’s
Chemistry of Carbon Compounds. In A Modern Comprehensive
(f) Holton, R. A.; Somoza, C.; Kim, H. B.; Liang, F.; Biediger, R. J.;
Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S. First total synthesis
of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 1994,
116 (4), 1597−1598. (g) Dabrowski, J. A.; Moebius, D. C.;
Wommack, A. J.; Kornahrens, A. F.; Kingsbury, J. S. Catalytic and
Regioselective Ring Expansion of Arylcyclobutanones with Trime-
thylsilyldiazomethane. Ligand-Dependent Entry to β-Ketosilane or
Enolsilane Adducts. Org. Lett. 2010, 12 (16), 3598−3601.
(9) (a) Haraguchi, R.; Takada, Y.; Matsubara, S. Preparation of
cycloheptane ring by nucleophilic cyclopropanation of 1,2-diketones
with bis(iodozincio)methane. Org. Biomol. Chem. 2015, 13 (1), 241−
247. (b) Takada, Y.; Nomura, K.; Matsubara, S. Preparation of a
Cycloheptane Ring from a 1,2-Diketone with High Stereoselectivity.
Org. Lett. 2010, 12 (22), 5204−5205. (c) Ragan, J. A.; Makowski, T.
W.; am Ende, D. J.; Clifford, P. J.; Young, G. R.; Conrad, A. K.;
Eisenbeis, S. A. A Practical Synthesis of Cycloheptane-1,3-dione. Org.
Process Res. Dev. 1998, 2 (6), 379−381.
(10) (a) Renaud, J.; Ouellet, S. G. Novel Synthesis of Cyclic
Alkenylboronates via Ring-Closing Metathesis. J. Am. Chem. Soc.
̇
1998, 120 (31), 7995−7996. (b) Jana, A.; Misztal, K.; Zak, A.; Grela,
K. Synthesis of Selectively Substituted or Deuterated Indenes via
Sequential Pd and Ru Catalysis. J. Org. Chem. 2017, 82 (8), 4226−
4234. (c) Ogba, O. M.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H.
Recent advances in ruthenium-based olefin metathesis. Chem. Soc.
Rev. 2018, 47 (12), 4510−4544. (d) Maier, M. E. Synthesis of
Medium-Sized Rings by the Ring-Closing Metathesis Reaction.
Angew. Chem., Int. Ed. 2000, 39 (12), 2073−2077.
(2) (a) Booker-Milburn, K. I.; Sharpe, A. Saturated and partially
unsaturated carbocycles. J. Chem. Soc., Perkin Trans. 1 1998, 1 (5),
983−1006. (b) Smith, M. B.; March, J. March’s Advanced Organic
Chemistry: Reactions, Mechanisms, and Structure, 6th ed.; 2006.
(3) (a) Ding, X.; Wang, H.; Wang, J.; Wang, S.; Lin, D.; Lv, L.;
̂
(11) (a) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Cycloisomerization
of 1,n-Enynes: Challenging Metal-Catalyzed Rearrangements and
Mechanistic Insights. Angew. Chem., Int. Ed. 2008, 47 (23), 4268−
̀
Zhou, Y.; Luo, X.; Jiang, H.; Acen
̃
a, J. L.; Soloshonok, V. A.; Liu, H.
4315. (b) Boing, C.; Francio, G.; Leitner, W. Nickel catalysed
̈
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX