2138
L. Yu, X. Huang
LETTER
(4) (a) Shi, M.; Xu, B. Tetrahedron Lett. 2003, 44, 3839.
methyl)benzene (1h) and diphenyl diselenide were irradi-
ated in air with EtOH as solvent (Scheme 4). Elimination
of PhSeH became feasible because of the presence of a
hydrogen atom adjacent to the carbocation. When diaryl-
substituted MCPs were employed, there was no hydrogen
atom linked to the cationic carbon, so elimination of
PhSeH was impossible and the rearrangement of carboni-
um ion happened.
(b) Huang, J.; Shi, M. Tetrahedron Lett. 2003, 44, 9343.
(c) Shao, L.; Shi, M. Eur. J. Org. Chem. 2004, 426. (d) Shi,
M.; Xu, B. Org. Lett. 2002, 4, 2145. (e) Shi, M.; Chen, Y.;
Xu, B.; Tang, J. Tetrahedron Lett. 2002, 43, 8019. (f) Shi,
M.; Shao, L.; Xu, B. Org. Lett. 2003, 5, 579. (g) Xu, B.;
Shi, M. Org. Lett. 2003, 5, 1415.
(5) (a) Zhou, H.; Huang, X.; Chen, W. J. Org. Chem. 2004, 69,
5471. (b) Huang, X.; Yu, L. Synlett 2005, 2953. (c) Yu, L.;
Huang, X.; Xie, M. Synlett 2006, 423.
(6) Liu, L.; Shi, M. Chem. Commun. 2004, 2878.
(7) Schmidt, U.; Müller, A.; Markau, K. Chem. Ber. 1964, 97,
405.
Br
O
hν >300 nm
+ PhSeSePh
Br
+
Br
(8) 2,4-Diphenylselenyl-1-butenes 2 – Typical Procedure.
A solution of(diphenylmethylene)cyclopropane (1a, 0.062
g, 0.3 mmol) and diphenyl diselenide (0.094 g, 0.3 mmol) in
5 mL of toluene was irradiated with a tungsten lamp (300 W)
under nitrogen atmosphere. The temperature rose to 40 °C
because of the irradiation. The reaction was monitored by
TLC (eluent: PE). After 3.5 h, the reaction terminated, the
solvent was evaporated under vacuum and the residue was
subjected to preparative TLC (eluent: PE) to afford 2a
(0.135 g, 87%). The melting point and spectra data were
consistent with literature.6 Other 2,4-diphenylselenyl-1-
butenes were prepared in a similar way.
(9) 1-Phenylselenylcyclobutanol 3 – Typical Procedure.
A solution of(diphenylmethylene)cyclopropane (1a, 0.062
g, 0.3 mmol), diphenyl diselenide (0.094 g, 0.3 mmol) and
dibenzoyl peroxide (0.073 g, 0.3 mmol) in 5 mL of EtOH
was irradiated with a tungsten lamp (300 W) in air. The
temperature rose to 40 °C because of the irradiation. The
reaction was monitored by TLC (eluent: PE). After 5 h, the
reaction terminated, the solvent was evaporated under
vacuum and the residue was subjected to preparative TLC
(eluent: EtOAc) to afford 3a (0.075 g, 66%). Other 1-
(phenylselenyl)cyclobutanols were prepared in a similar
way.
in air
SePh
SePh
SePh
1h
2h
20%
10h
46%
Scheme 4
In conclusion, we reported here an efficient transforma-
tion of MCPs to the corresponding 2,4-diphenylselenyl-1-
butenes under visible-light irradiation. We also developed
a novel and convenient method for the synthesis of 1-
(phenylselenyl)cyclobutanols. The reaction mechanism
and synthetic applications of this methodology are under
further investigations in our laboratory.
Acknowledgment
This work was supported by the National Natural Science Founda-
tion of China (20332060, 20472072) and Academic Foundation of
Zhejiang Province.
Selected Data for 3a: White solid, mp 106–107 °C. 1H
NMR (400 MHz, CDCl3): d = 7.23–7.57 (m, 15 H), 5.80 (s,
1 H, exchanged with D2O), 1.26–1.32 (m, 1 H), 0.64–0.70
(m, 2 H), 0.42–0.46 (m, 1 H). 13C NMR (100 MHz, CDCl3):
d = 6.1, 9.0, 51.1, 81.3, 127.0, 127.1, 127.3, 127.5, 127.7,
128.0, 128.2, 129.1, 131.0, 131.1, 140.1, 143.8. IR (KBr):
d = 3057, 1491, 1044, 806, 745, 703 cm–1. MS (EI, 70 eV):
m/z (%) = 380 (4) [M+ + H], 379 (1) [M+], 198 (33), 183 (40),
105 (100).
References and Notes
(1) For the preparation of the MCPs see: Brandi, A.; Goti, A.
Chem. Rev. 1998, 98, 589; and references cited therein.
(2) (a) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem.
Rev. 2003, 103, 1213. (b) Nakamura, I.; Yamamoto, Y. Adv.
Synth. Catal. 2002, 344, 111; and references cited therein.
(3) (a) Camacho, D. H.; Nakamura, I.; Saito, S.; Yamamoto, Y.
J. Org. Chem. 2001, 66, 270. (b) Tsukada, N.; Shibuya, A.;
Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119,
8123. (c) Nakamura, I.; Saito, S.; Yamamoto, Y. J. Am.
Chem. Soc. 2000, 122, 2661. (d) Nakamura, I.; Siriwardana,
A. I.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67,
3445. (e) Nakamura, I.; Itagaki, H.; Yamamoto, Y. J. Org.
Chem. 1998, 63, 6458. (f) Nakamura, I.; Oh, B. H.; Saito, S.;
Yamamoto, Y. Angew. Chem. Int. Ed. 2001, 40, 1298.
(g) Lautens, M.; Ren, Y.; Delanghe, P. H. M. J. Am. Chem.
Soc. 1994, 116, 8821. (h) Lautens, M.; Ren, Y. J. Am. Chem.
Soc. 1996, 118, 9597. (i) Lautens, M.; Ren, Y. J. Am. Chem.
Soc. 1996, 118, 10668. (j) Suginome, M.; Matsuda, T.; Ito,
Y. J. Am. Chem. Soc. 2000, 122, 11015. (k) Lautens, M.;
Meyer, C.; Lorenz, A. J. Am. Chem. Soc. 1996, 118, 10676.
(l) Bessmertnykh, A. G.; Blinov, K. A.; Grishin, Y. K.;
Donskaya, N. A.; Tveritinova, E. V.; Yur’eva, N. M.;
Beletskaya, I. P. J. Org. Chem. 1997, 62, 6069.
(10) Namyslo, J. C.; Kaufmann, D. E. Chem. Rev. 2003, 103,
1485.
(11) (a) Shafiee, A.; Mazloumi, A.; Cohen, V. I. J. Heterocycl.
Chem. 1979, 16, 1563. (b) Shafiee, A.; Shafaati, A.;
Khamench, B. H. J. Heterocycl. Chem. 1989, 26, 709.
(12) (a) G riffin, R. J.; Arris, C. E.; Bleasdale, C.; Boyle, F. T.;
Calvert, A. H.; Curtin, N. J.; Dalby, C.; Kanugula, S.;
Lembicz, N. K.; Newell, D. R.; Pegg, A. E.; Golding, B. T.
J. Med. Chem. 2000, 43, 4071. (b) Rivkin, A.; de Turiso, F.
G.; Nagashima, T.; Curran, D. P. J. Org. Chem. 2004, 69,
3719.
(13) Shimizu, M.; Kuwajima, I. Bull. Chem. Soc. Jpn. 1981, 54,
3100.
(14) (a) Trost, B. M.; Bogdanowicz, M. J. J. Am. Chem. Soc.
1973, 95, 5311. (b) Crandall, J. K.; Conover, W. W. J. Org.
Chem. 1978, 43, 3533.
Synlett 2006, No. 13, 2136–2138 © Thieme Stuttgart · New York