Organic Letters
Letter
a
ORCID
Scheme 4. Transformations of Borylated Products
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the NSFC (21672195 and
21702201), the Fundamental Research Funds for the Central
Universities (WK2060190082), Recruitment Program of Global
Experts, and University of Science and Technology of China. F.-
L.Z. is grateful for the grant from the China Postdoctoral Science
Foundation (2016M602014 and 2018T110620). We thank
Prof. Shunsuke Chiba (Nanyang Technological University,
Singapore) for valuable suggestions.
REFERENCES
■
(1) For selected recent reviews, see: (a) Costantino, L.; Barlocco, D.
Curr. Med. Chem. 2006, 13, 65. (b) Welsch, M. E.; Snyder, S. A.;
Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347. (c) Thomas, G.
L.; Johannes, C. W. Curr. Opin. Chem. Biol. 2011, 15, 516. (d) Taylor, R.
D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
(2) For selected recent reviews, see: Oehlrich, D.; Prokopcova, H.;
Gijsen, H. J. M. Bioorg. Med. Chem. Lett. 2014, 24, 2033. (b) Edwards, P.
D.; Albert, J. S.; Sylvester, M.; Aharony, D.; Andisik, D.; Callaghan, O.;
Campbell, J. B.; Carr, R. A.; Chessari, G.; Congreve, M.; Frederickson,
M.; Folmer, R. H. A.; Geschwindner, S.; Koether, G.; Kolmodin, K.;
Krumrine, J.; Mauger, R. C.; Murray, C. W.; Olsson, L.-L.; Patel, S.;
Spear, N.; Tian, G. J. Med. Chem. 2007, 50, 5912. (c) Shankaran, K.;
Donnelly, K. L.; Shah, S. K.; Guthikonda, R. N.; MacCoss, M.; Humes,
J. L.; Pacholok, S. G.; Grant, S. K.; Kelly, T. M.; Wong, K. K. Bioorg.
Med. Chem. Lett. 2004, 14, 4539. (d) Kshirsagar, U. A. Org. Biomol.
Chem. 2015, 13, 9336.
a
Reagents and conditions: (a) TsCl (1.2 equiv), NaH (1.5 equiv),
THF, 30 °C, 4 h; (b) aq HCl (2 M, 2.6 equiv), pinacol (2 equiv),
CH3CN, 30 °C, 2 h; (c) NaH (1.2 equiv), THF, 30 °C, 10 min; (d)
(1) aq HCl (2 M, 2.6 equiv), CH3CN, 30 °C, 2 h, (2) NaBO3 (3
equiv), THF/H2O, 30 °C, 1 h.
following treatment with HCl17 and pinacol afforded syntheti-
cally useful pinacol boronic ester 9. Interestingly, treatment of
5b with NaH led to β-boryl-γ-cyanoamine 109 with the
maintenance of excellent diastereoselectivity. The correspond-
ing pinacol boronic ester 11 was also obtained in a good yield.
The NHC−borane-substituted quinazolinone 7a was converted
to pinacol boronic ester 12 and hydroxylated product 13 in 53
and 74% yields, respectively.
In summary, we have developed a radical borylation method
of N-allylcyanamides to construct diverse boron-handled N-
heterocycles. The reactions were initiated by a chemo- and
regioselective addition of an NHC−boryl radical to the aryl-
substituted alkene moiety, followed by varied cascade processes
to assemble various boron-tethered N-heterocyclic frameworks.
Further transformations of borylated N-heterocyclic products to
valuable synthetic building blocks have been accomplished. The
present method offers a conceptually new strategy to access
valuable boron-functionalized bioactive N-heterocycles, and it
would find important applications in medicinal chemistry.
(3) Hall, D. G. Boronic Acids: Preparation and Applications in Organic
Synthesis, Medicine and Materials, 2nd ed.; Wiley-VCH: Weinheim,
Germany, 2011.
(4) For a recent review on transition-metal-catalyzed borylative
́
̃
uel, E.; Cardenas, D. J. Eur. J. Org. Chem.
cyclization reactions, see: Bun
2016, 2016, 5446.
(5) For selected recent reviews, see: (a) Baralle, A.; Baroudi, A.;
̂
Daniel, M.; Fensterbank, L.; Goddard, J.-P.; Lacote, E.; Larraufie, M.-
H.; Maestri, G.; Malacria, M.; Ollivier, C. In Encyclopedia of Radicals in
Chemistry, Biology and Materials; Chatgilialoglu, C., Studer, A., Eds.;
John Wiley & Sons, Ltd: Chichester, U.K., 2012. (b) Wille, U. Chem.
̂
Rev. 2013, 113, 813. (c) Albert, M.; Fensterbank, L.; Lacote, E.;
Malacria, M. Top Curr. Chem. 2006, 264, 1. (d) Dhimane, A.-L.;
Fensterbank, L.; Malacria, M. In Radicals in Organic Synthesis; Renaud,
P., Sibi, M. P., Eds.; Wiley: Weinheim, Germany, 2008; Vol. 2, p 350.
(e) Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329.
ASSOCIATED CONTENT
■
S
* Supporting Information
(6) (a) Ren, S.-C.; Zhang, F.-L.; Qi, J.; Huang, Y.-S.; Xu, A.-Q.; Yan,
H.-Y.; Wang, Y.-F. J. Am. Chem. Soc. 2017, 139, 6050. (b) Qi, J.; Zhang,
F.-L.; Huang, Y.-S.; Xu, A.-Q.; Ren, S.-C.; Yi, Z.-Y.; Wang, Y.-F. Org.
Lett. 2018, 20, 2360.
(7) For recent reviews, see: (a) Walton, J. C. Angew. Chem., Int. Ed.
2009, 48, 1726. (b) Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.;
The Supporting Information is available free of charge on the
Experimental details (PDF)
Accession Codes
̂
Fensterbank, L.; Malacria, M.; Lacote, E. Angew. Chem., Int. Ed. 2011,
graphic data for this paper. These data can be obtained free of
bridge Crystallographic Data Centre, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: +44 1223 336033.
50, 10294. For a leading report, see: (c) Ueng, S.-H.; Makhlouf Brahmi,
́
̂
M.; Derat, E.; Fensterbank, L.; Lacote, E.; Malacria, M.; Curran, D. P. J.
Am. Chem. Soc. 2008, 130, 10082. For selected recent examples, see:
́
(d) Lalevee, J.; Telitel, S.; Tehfe, M. A.; Fouassier, J. P.; Curran, D. P.;
̂
Lacote, E. Angew. Chem., Int. Ed. 2012, 51, 5958. (e) Pan, X.; Vallet, A.-
L.; Schweizer, S.; Dahbi, K.; Delpech, B.; Blanchard, N.; Graff, B.; Geib,
́
̂
S. J.; Curran, D. P.; Lalevee, J.; Lacote, E. J. Am. Chem. Soc. 2013, 135,
10484. (f) Watanabe, T.; Hirose, D.; Curran, D. P.; Taniguchi, T. Chem.
- Eur. J. 2017, 23, 5404. (g) Yu, Y.-J.; Zhang, F.-L.; Cheng, J.; Hei, J.-H.;
Deng, W.-T.; Wang, Y.-F. Org. Lett. 2018, 20, 24. (h) Shimoi, M.;
Watanabe, T.; Maeda, K.; Curran, D. P.; Taniguchi, T. Angew. Chem.,
AUTHOR INFORMATION
■
Corresponding Author
D
Org. Lett. XXXX, XXX, XXX−XXX