6-azaindoline (1) and its tricyclic derivative (2) from a readily
accessible linear precursor.14 Key to the present approach is
the design and use of a densely functionalized isocyanoac-
etamide15 whose functional groups, isonitrile, amide, double
bond, and ester, participated in the reaction sequentially and
in a highly ordered manner to provide 1 and 2 in good yield
(Figure 1).
Scheme 1. Synthesis of Isocyanoacetamides 3a and 3b
tenoate (7)16 in the presence of EDC in dichloromethane gave
the amide 8a, which was dehydrated (POCl3, Et3N, CH2Cl2)
to give the desired isonitrile 3a in 58% overall yield.
Compound 3b containing an electronically neutral double
bond was prepared similarly from N-formyl-phenyglycine
and 5-benzylamino-1-pentene.
Figure 1. 6-Azaindoline and its tricyclic derivative: structure and
synthesis strategy.
Using isocyanoacetamide 3a, morpholine 4a, and heptanal
5a as test substrates (Scheme 2), we performed a survey of
The previously unknown R-substituted R-isocyanoaceta-
mide (3a) is synthesized as shown in Scheme 1. Coupling
of N-formyl phenylalanine (6) with 5-benzylamino-2-pen-
Scheme 2. Three-Component Synthesis of 6-Azaindoline
(7) (a) Frydman, B.; Buldain, G.; Repetto, J. C. J. Org. Chem. 1973, 38,
1824-1831. (b) Dodd, R. H.; Doisy, X.; Potier, P. Heterocycles 1989, 28,
1101-1113. (c) Mahadevan, I.; Rasmussen, M. J. Heterocycl. Chem. 1992,
29, 359-367. (d) Dekhane, M.; Potier, P.; Dodd, R. H. Tetrahedron 1993,
49, 8139-8146. (e) Hands, D.; Bishop, B.; Cameron, M.; Edwards, J. S.;
Cottrell, I. F.; Wright, S. H. B. Synthesis 1996, 877-882. (f) Rousseau, J.
F.; Dodd, R. H. J. Org. Chem. 1998, 63, 2731-2737. (g) Beller, M.; Breindl,
C.; Riermeier, T. H.; Eichberger, M.; Trauthwein, H. Angew. Chem., Int.
Ed. Engl. 1998, 37, 3389-3391. (h) Rodriguez, A. L.; Koradin, C.; Dohle,
W.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 2488-2490. (i) Kuzmich,
D.; Mulrooney, C. Synthesis 2003, 1671-1678.
(8) Recent examples, see: (a) Leroi, C.; Bertin, D.; Dufils, P.-E.; Gigmes,
D.; Marque, S.; Tordo, P.; Couturier, J.-L.; Guerret, O.; Ciufolini, M. A.
Org. Lett. 2003, 5, 4943-4945. (b) Viswanathan, R.; Prabhakaran, E. N.;
Plotkin, M. A.; Johnston, J. N. J. Am. Chem. Soc. 2003, 125, 163-168. (c)
Moutrille, C.; Zard, S. Z. Tetrahedron Lett. 2004, 45, 4631-4634. For an
excellent application in natural product synthesis, see: (d) Yokoshima, S.;
Ueda, T.; Kobayashi, S.; Sato, A.; Kuboyama, T.; Tokuyama, H.; Fukuyama,
T. J. Am. Chem. Soc. 2002, 124, 2137-2138.
reaction conditions; the results are summarized in Table 1.
When the reaction was carried out in MeOH at room
temperature, oxazole 9a was isolated in 88% yield (entry
1).17 However, when the toluene solution was heated to
reflux, the desired 6-azaindoline 1a was isolated in 61% yield
(entry 2). Addition of ammonium chloride18 and camphor-
sulfonic acid19 did not improve the product yield (entries 6
(9) (a) Ujjainwalla, F.; Warner, D. Tetrahedron Lett. 1998, 39, 5355-
5358. (b) Zakrzewski, P.; Gowan, M.; Trimble, L. A.; Lau, C. K. Synthesis
1999, 1893-1902. (c) Penoni, A.; Nicholas, K. M. J. Chem. Soc., Chem.
Commun. 2002, 484-485. For recent related reviews, see: (d) Battistuzzi,
G.; Cacchi, S.; Fabrizi, G. Eur. J. Org. Chem. 2002, 2671-2681. (e)
Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004, 104, 2127-2198. (f) Zeni,
G.; Larock, R. C. Chem. ReV. 2004, 104, 2285-2309.
(10) Campos, P. J.; An˜o´n, E.; Carmen Malo, M.; Rodr´ıguez, M. A.
Tetrahedron 1999, 55, 14079-14088.
(11) (a) Li, J. H.; Snyder, J. K. J. Org. Chem. 1993, 58, 516-519. (b)
Rashatasakhon, P.; Padwa, A. Org. Lett. 2003, 5, 189-191.
(14) Palladium-catalyzed three-component synthesis of indoline has been
reported; see: Grigg, R.; Mariani, M.; Sridharan, V. Tetrahedron Lett. 2001,
42, 8677-8680.
(15) Marcaccini, S.; Torroba, T. Org. Prep. Proced. Int. 1993, 25, 141-
208.
(12) Sun, X.; Wang, C.; Li, Z.; Zhang, S.; Xi, Z. J. Am. Chem. Soc.
2004, 126, 7172-7173.
(13) For recent reviews on the subject, see: (a) Weber, L. Curr. Med.
Chem. 2002, 9, 2085-2093. (b) Do¨mling, A. Curr. Opin. Chem. Biol. 2002,
6, 306-313. (c) Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 51-80.
(d) Orru, R. V. A.; De Greef, M. Synthesis 2003, 1471-1499. (e) Balme,
G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem. 2003, 4101-4111. (f)
Jacobi von Wangelin, A.; Neumann, H.; Go¨rdes, D.; Klaus, S. Stru¨bing,
D.; Beller, M. Chem. Eur. J. 2003, 9, 4286-4294. (g) Murakami, M. Angew.
Chem., Int. Ed. 2003, 42, 718-720. (h) Zhu, J. Eur. J. Org. Chem. 2003,
1133-1144.
(16) Hirai, Y.; Terada, T.; Hagiwara, A.; Yamasaki, T. Chem. Pham.
Bull. 1988, 36, 1343-1350.
(17) (a) Sun, X.; Janvier, P.; Zhao, G.; Bienayme´, H.; Zhu, J. Org. Lett.
2001, 3, 877-880. (b) Janvier, P.; Sun, X.; Bienayme´, H.; Zhu, J. J. Am.
Chem. Soc. 2002, 124, 2560-2567.
(18) (a) Fayol, A.; Zhu, J. Angew. Chem., Int. Ed. 2002, 41, 3633-
3635. (b) Fayol, A.; Zhu, J. Org. Lett. 2004, 6, 115-118.
240
Org. Lett., Vol. 7, No. 2, 2005