Wu Zhang et al.
FULL PAPERS
transition metal-catalyzed mechanism,[10b,d] and the
second step might be a radical mechanism, in accord-
ance with the mechanism of organocatalytic C H ary-
lation presented by Shi, Shirakawa/Hayashi and
Studer.[11,13] To test this suggestion, a typical radical
scavenger tetramethylpiperidine N-oxide (TEMPO)
was added under the same conditions, and no trace of
desired product could be obtained.
Chem. 2009, 52, 14–19; b) S. Bondock, W. Fadaly, M. A.
Metwally, Eur. J. Med. Chem. 2010, 45, 3692–3701.
[2] V. N. Telvekar, V. K. Bairwa, K. Satardekar, A. Bellubi,
Bioorg. Med. Chem. Lett. 2012, 22, 649–652.
[3] a) W. Aelterman, Y. Lang, B. Willemsens, I. Vervest, S.
Leurs, F. D. Knaep, Org. Process Res. Dev. 2001, 5,
467–471; b) M. Yoshida, I. Hayakawa, N. Hayashi, T.
Agatsuma, Y. Oda, F. Tanzawa, S. Iwasaki, K. Koyama,
H. Furukawa, S. Kurakatad, Y. Suganob, Bioorg. Med.
Chem. Lett. 2005, 15, 3328–3332; c) D. T. K. Oanh,
H. V. Hai, S. H. Park, H.-J. Kim, B.-W. Han, H.-S. Kim,
J.-T. Hong, S.-B. Han, V. T. M. Hue, N.-H. Nama,
Bioorg. Med. Chem. Lett. 2011, 21, 7509–7512.
À
Conclusions
[4] a) A. Kamal, M. Naseer A. Khan, K. Srinivasa Reddy,
Y. V. V. Srikanth, B. Sridhar, Chem. Biol. Drug Des.
2008, 71, 78–86; b) A. Kamal, M. N. A. Khan, Y. V. V.
Srikanth, S. V. C. R. N. C. Rajesh, Chem. Biol. Drug
Des. 2009, 73, 687–693; c) S. Saeed, N. Rashid, P. G.
Jones, M. Ali, R. Hussain, Eur. J. Med. Chem. 2010, 45,
1323–1331; d) D. Havrylyuk, L. Mosula, B. Zimenkov-
sky, O. Vasylenko, A. Gzella, R. Lesyk, Eur. J. Med.
Chem. 2010, 45, 5012–5021.
[5] a) M. W. Hooper, M. Utsunomiya, J. F. Hartwig, J. Org.
Chem. 2003, 68, 2861–2873; b) M. D. Charles, P.
Schultz, S. L. Buchwald, Org. Lett. 2005, 7, 3965–3968.
[6] a) J. Yin, M. M. Zhao, M. A. Huffman, J. M. McNa-
mara, Org. Lett. 2002, 4, 3481–3484; b) A. Miloudi, D.
El-Abed, G. Boyer, J. P. Finet, J. P. Galy, D. Siri, Eur. J.
Org. Chem. 2004, 7, 1509–1516; c) Q. Shen, T. Ogata,
J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 6586–6596.
[7] a) C. Benedꢃ, F. Bravo, P. Uriz, E. Fernꢄndez, C.
Claver, S. Castillꢅn, Tetrahedron Lett. 2003, 44, 6073–
6077; b) L. L. Joyce, G. Evindar, R. A. Batey, Chem.
Commun. 2004, 4, 446–447; c) J. Wang, F. Peng, J.-l.
Jiang, Z.-j. Lu, L.-y. Wang, J. Bai, Y. Pan, Tetrahedron
Lett. 2008, 49, 467–470; d) P. Saha, T. Ramana, N. Pur-
kait, M. A. Ali, R. Paul, T. Punniyamurthy, J. Org.
Chem. 2009, 74, 8719–8725; e) K. Inamoto, C. Hasega-
wa, K. Hiroya, T. Doi, Org. Lett. 2008, 10, 5147–5150;
f) L. L. Joyce, R. A. Batey, Org. Lett. 2009, 11, 2792–
2795.
In summary, phen can effectively catalyze the tandem
reaction of 2-iodoanilines and isothiocyanates to syn-
thesize 2-aminobenzothiazole compounds in excellent
yields. A more environmentally friendly and mild
base was used. It is also noteworthy to point out that
the reactions are carried out in water.
Experimental Section
Typical Experimental Procedure for 1,10-
Phenanthroline-Catalyzed Tandem Reactions of 2-
Iodobenzenamines with Isothiocyanates
A mixture of 2-iodoaniline 1 (0.25 mmol), isothiocyanate 2
(0.30 mmol, 1.2 equiv.), phen (0.025 mmol, 10 mol%),
NaHCO3 (0.5 mmol, 2 equiv.), and H2O (4 mL) was stirred
in air, heating from room temperature to 808C (about
0.5 h), then continued to stir at 808C for 2 h. Then the reac-
tion was stopped and cooled down to room temperature, the
mixture was extracted with ethyl acetate (3ꢂ10 mL), the
combined organic layer was washed with water (2ꢂ10 mL),
then dried over anhydrous MgSO4 and evaporated under
vacuum. The residue was purified by column chromatogra-
phy on silica gel (petroleum ether/ethyl acetate) to afford
the corresponding product 3.
N-Phenylbenzo[d]thiazol-2-amine (3a):[14] White solid; mp
161–1628C (lit. mp 157.2–159.48C). 1H NMR (300 MHz,
CDCl3): d=7.63 (d, J=7.6 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H),
7.50 (d, J=7.6 Hz, 2H), 7.41 (t, J=7.4 Hz, 2H), 7.32 (t, J=
7.3 Hz, 1H), 7.12–7.20 (m, 2H); 13C NMR (75 MHz,
CDCl3): d=165.2, 151.3, 140.0, 129.8, 129.6, 126.2, 124.5,
122.4, 120.9, 120.5, 119.3.
[8] a) D. Monguchi, T. Fujiwara, H. Furukawa, A. Mori,
Org. Lett. 2009, 11, 1607–1610; b) S. H. Cho, J. Y. Kim,
S. Yunmi Lee, S. Chang, Angew. Chem. 2009, 121,
9291–9294; Angew. Chem. Int. Ed. 2009, 48, 9127–9130;
c) Q. Wang, S. L. Schreiber, Org. Lett. 2009, 11, 5178–
5180; d) A. Armstrong, J. C. Collins, Angew. Chem.
2010, 122, 2332–2335; Angew. Chem. Int. Ed. 2010, 49,
2282–2285.
[9] D. Ma, X. Lu, L. Shi, H. Zhang, Y. Jiang, X. Liu,
Angew. Chem. 2011, 123, 1150–1153; Angew. Chem.
Int. Ed. 2011, 50, 1118–1121.
Acknowledgements
Financial support from the National Natural Science Founda-
tion of China (20972002, 21171006) and Education Depart-
ment of Anhui Province (TD200707) are gratefully acknowl-
edged.
[10] a) Q. Ding, X. He, J. Wu, J. Comb. Chem. 2009, 11,
587–591; b) G. Shen, X. Lv, W. Bao, Eur. J. Org. Chem.
2009, 34, 5897–5901; c) J.-W. Qiu, X.-G. Zhang, R.-Y.
Tang, P. Zhong, J.-H. Li, Adv. Synth. Catal. 2009, 351,
2319–2323; d) Y.-J. Guo, R.-Y. Tang, P. Zhong, J.-H. Li,
Tetrahedron Lett. 2010, 51, 649–652; e) Q. Ding, B.
Cao, X. Liu, Z. Zong, Y.-Y. Peng, Green Chem. 2010,
12, 1607–1610.
References
[1] a) R. D. Carpenter, M. Andrei, O. H. Aina, E. Y. Lau,
[11] a) C.-L. Sun, H. Li, D.-G. Yu, M. Yu, X. Zhou, X.-Y.
Lu, K. Huang, S.-F. Zheng, B.-J. Li, Z.-J. Shi, Nat.
F. C. Lightstone, R. Liu, K. S. Lam, M. J. Kurth, J. Med.
4
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 0000, 000, 0 – 0
ÝÝ
These are not the final page numbers!