10.1002/anie.202013561
Angewandte Chemie International Edition
RESEARCH ARTICLE
de Bruin, X. P. Zhang, J. Am. Chem. Soc. 2011, 133, 8518-8521; c) A.
Gansäuer, M. Klatte, G. M. Brändle, J. Friedrich, Angew. Chem. Int. Ed.
2012, 51, 8891-8894; Angew. Chem. 2012, 124, 9021-9024; d) D. S. G.
Henriques, K. Zimmer, S. Klare, A. Meyer, E. Rojo-Wiechel, M. Bauer, R.
Sure, S. Grimme, O. Schiemann, R. A. Flowers II, A. Gansäuer, Angew.
Chem. Int. Ed. 2016, 55, 7671-7675; Angew. Chem. 2016, 128, 7801-
7805; e) W. Hao, X. Wu, J. Z. Sun, J. C. Siu, S. N. MacMillan, S. Lin, J.
Am. Chem. Soc. 2017, 139, 12141-12144; f) W. Hao, J. H. Harenberg,
S. N. MacMillan, S. Lin, J. Am. Chem. Soc. 2018, 140, 3514-3517; g) H.-
M. Huang, J. J. W. McDouall, D. J. Procter, Nature Cat. 2019, 2, 211-
218; h) C. Yao, T. Dahmen, A. Gansäuer, J. Norton, Science 2019, 364,
764-767; i) M. Lankelma, A. M. Olivares, B. de Bruin, Chem. Eur. J. 2019,
25, 5658-5663; j) K. Lang, S. Torker, L. Wojtas, X. P. Zhang J. Am. Chem.
Soc. 2019, 141, 12388-12396; k) Y. Hu, K. Lang, C. Li, J. B. Gill, I. Kim,
H. Lu, K. B. Fields, M. K. Marshall, Q. Cheng, X. Cui, L. Wojtas, X. P.
Zhang, J. Am. Chem. Soc. 2019, 141, 18160-18169; l) M. Zhou, M.
Lankelma, J. I. van der Vlugt, B. de Bruin, Angew. Chem. Int. Ed. 2020,
59, 11073-11079; Angew. Chem. 2020, 132, 11166-11172.
An attractive feature of our method is that from the benzylamines
substrates, the corresponding ketones can be prepared when an
acidic aqueous work-up is carried with the crude product
(Scheme 8).
Conclusion
In summary, we have developed a novel titanocene catalyzed
method for the synthesis of acetals and hemiaminals from
benzylic ethers and benzylic amines with pending epoxides. The
reaction features catalysis in single electron steps, an epoxide
opening as oxidative addition, a H-atom transfer to generate a
benzylic radical as radical translocation step, and an
organometallic oxygen rebound as reductive elimination. The
thermochemistry
PW6B95-D4/def2-QZVP
of
the
+
reactions
COSMO-RS(THF) // PBEh-3c/
was
studied
at
[6]
a) W. A. Nugent, T. V. RajanBabu, J. Am. Chem. Soc. 1988, 110, 8561-
8562; b) K. Daasbjerg, H. Svith, S. Grimme, M. Gerenkamp, C. Mück-
Lichtenfeld, A. Gansäuer, A. Barchuk, F. Keller, Angew. Chem. Int. Ed.
2006, 45, 2041-2044; Angew. Chem. 2006, 118, 2095-2098; c) A.
Gansäuer, A. Barchuk, F. Keller, M. Schmitt, S. Grimme, M. Gerenkamp,
C. Mück-Lichtenfeld, K. Daasbjerg, H. Svith, J. Am. Chem. Soc. 2007,
129, 1359-1371.
DCOSMO-RS(THF) level of theory including full conformational
search for all stationary points. Theory and experiment are in
good qualitative agreement. The automatic exploration of
conformational space by the CREST program was essential for
identifying the lowest lying conformations and we recommend our
computational approach in general for such mechanistic studies.
The stereoselectivity can be deduced from the structure of the
lowest lying benzylic radicals. Their conformations are controlled
by hyperconjugative interactions and by steric interactions
between the catalyst and the aryl groups. A particularly interesting
aspect of our mechanism is that the oxidation of the benzylic
center occurs under reducing conditions. No external oxidizing
agent is required, making it a promising method for highly
selective oxidations in natural product and API synthesis.
Moreover, the corresponding carbonyl compounds can be directly
obtained by an acidic aqueous work-up of the reaction mixture.
[7]
[8]
For a recent review see: L. M. Stateman, K. M. Nakafuku, D. A. Nagib,
Synthesis 2018, 50, 1569-1586.
a) J. J. Brocks, H.-D. Beckhaus, A. L. J. Beckwith, C. Rüchardt, J. Org.
Chem. 1998, 63, 1935-1943; b) S. J. Blanksby, G. B. Ellison, Acc. Chem.
Res. 2003, 36, 255–263.
[9]
a) X. Huang, J. T. Groves, J. Biol. Inorg. Chem. 2017, 22, 185-207. (b) J.
P. T. Zaragoza, T. H. Yosca, M. A. Siegler, P. Moënne-Loccoz, M. T.
Green, D. P. Goldger, J. Am. Chem. Soc. 2017, 139, 13640-13643.
[10] a) A. Gansäuer, M. Behlendorf, D. von Laufenberg, A. Fleckhaus, C.
Kube, D. V. Sadasivam, R. A. Flowers II, Angew. Chem. Int. Ed. 2012,
51, 4739-4742; Angew. Chem. 2012, 124, 4819-4823; b) A. Gansäuer,
D. von Laufenberg, C. Kube, T. Dahmen, A. Michelmann, M. Behlendorf,
R. Sure, M. Seddiqzai, S. Grimme, D. V. Sadasivam, G. D. Fianu, R. A.
Flowers II, Chem. Eur.J. 2015, 21, 280-289; c) A. Gansäuer, S.
Hildebrandt, A. Michelmann, T. Dahmen, D. von Laufenberg, C. Kube, G.
D. Fianu, R. A. Flowers II Angew. Chem. Int. Ed. 2015, 54, 7003-7006;
Angew. Chem. 2015, 127, 7109-7112; d) R. B. Richrath, T. Olyschläger,
S. Hildebrandt, D. G. Enny, G. D. Fianu, R. A. Flowers II, A. Gansäuer,
Chem. Eur. J. 2018, 24, 6371-6379; e) F. Mühlhaus, H. Weißbarth, T.
Dahmen, G. Schnakenburg, A. Gansäuer, Angew. Chem. Int. Ed. 2019,
58, 14208-14212; Angew. Chem. 2019, 131, 14346-14350; f) Z. Zhang,
R. B. Richrath, A. Gansäuer, ACS Catal. 2019, 9, 3208-3212.g) H.
Weißbarth, F. Mühlhaus, A. Gansäuer, Synthesis 2020, 52, 2940-2947.
[11] a) We are not aware of any examples of our reaction or the postulated
mechanis in the literature. However, a stoichiometric reaction observed
in T. K. Chakraborty, A. K. Chattopadhyay, S. Ghosh, Tetrahedron Lett.
2007, 48, 1139-1142. may proceed by our mechanism. However, no
explanation for formation was givmen or proposed. We tank W. A Nugent
for bringing this reference to our attention. b) The formation of acetals
similar to the ones described here with acid catalysis under
thermodynamic control give essentially no diastereoselectivity: T. D. Inch,
N. Williams, J. Chem. Soc. (C) 1970, 263-269.
Acknowledgements
This work was supported by the DFG (Ga 619/12-2 to A. G.) and
in the framework of the “Gottfried Wilhelm Leibniz Prize” to S. G.
R. B. R. thanks the Konrad-Adenauer-Stiftung for a fellowship.
Keywords: catalysis • conformational search • mechanism •
radical • titanium
[1]
a) A. Gansäuer, A. Fleckhaus, M. Alejandre Lafont, A. Okkel, K. Kotsis,
A. Anoop, F. Neese, J. Am. Chem. Soc. 2009, 131, 16989-16999; b) A.
Gansäuer, S. Hildebrandt, E. Vogelsang, R. A. Flowers II, Dalton Trans.
2016, 45, 448-452.
[2]
[3]
a) J. I. van der Vlugt, Chem. Eur. J. 2019, 25, 2651-2662; b) H.-M. Huang,
M. H. Garduño-Castro, C. Morill, D. J. Procter, Chem. Soc. Rev. 2019,
48, 4626-4638.
[12] a) P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22,
7169-7192; b) S. Grimme J. Chem. Theory Coput. 2019, 155, 2847-2862.
[13] S. Spicher, S. Grimme, Angew. Chem. Int. Ed. 2020, 59, 15665-15673;
Angew. Chem. 2020, 132, 15795-15803.
a) S. Z. Zard, Radical Reactions in Organic Synthesis Oxford University
Press, Oxford, 2003; b) P. Renaud, M. P. Sibi, Radicals in Organic
Synthesis Wiley-VCH, Weinheim, 2001; c) D. P. Curran, N. A. Porter, B.
Giese, Stereochemistry of Radical Reactions Wiley-VCH, Weinheim,
1996.
[14] a) P. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102; b) P. M.
Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043-3050; c) S. Dohm,
M. Bursch, A. Hansen, S. Grimme J. Chem. Theory Comput. 2020, 16,
2002-2012; d) C. Bannwarth, S. Ehlert and S. Grimme., J. Chem. Theory
Comput. 2019, 15, 1652-1671; e) C. Bannwarth, E. Caldeweyher, S.
Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, WIREs
Comput Mol Sci. 2020, e01493; f) Semiempirical extended tight‐binding
[4]
[5]
a) A. Gansäuer, B. Rinker, M. Pierobon, S. Grimme, M. Gerenkamp, C.
Mück-Lichtenfeld, Angew. Chem. Int. Ed. 2003, 42, 3687-3690; Angew.
Chem. 2003, 115, 3815-3818; b) A. Gansäuer, B. Rinker, N. Ndene-
Schiffer, M. Pierobon, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld,
Eur. J. Org. Chem. 2004, 2337-2351.
a) W. I. Dzik, X. Xu, X. P. Zhang, J. N. H Reek, B. de Bruin, J. Am. Chem.
Soc. 2010, 132, 10891-10902; b) H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B.
6
This article is protected by copyright. All rights reserved.