LETTER
Synthesis of Novel Polycyclic b-Lactams from D-Glucose
1251
(2) (a) Hook, V. Chem. Ber. 1997, 33, 34. (b) Niccolai, D.;
Tarsi, L.; Thomas, R. J. Chem. Commun. 1997, 2333.
(c) Davies, J. Science 1994, 264, 375. (d) Spratt, B. G.
Science 1994, 264, 388.
(3) (a) Radicals in Organic Synthesis; Renaud, P.; Sibi, M. P.,
Eds.; Wiley-VCH: Weinheim, Germany, 2002. (b) Curran,
D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical
Reactions; VCH: Weinheim, 1996. (c) Giese, B. Radicals in
Organic Synthesis: Formation of Carbon-Carbon Bonds;
Pergamon: Oxford, 1986. (d) Giese, B.; Kopping, B.; Göbel,
J.; Dickhaut, G.; Thoma, G.; Trach, F. Org. React. 1996, 48,
301.
This is in contrast with the normally expected exo-radical
cyclization of hept-6-ynyl system.6c–g Single crystal X-ray
analysis17 of 10 further confirmed the structure and the ab-
solute stereochemistry at the newly formed centers was
established as 3S, 4R, 8S based on the known absolute ste-
reochemistry of 6R, 7R, 9S of sugar moiety. The carbon
atoms C7 and C8 are disordered and occupy two positions
at C7A, C7B and C8A, C8B with 0.7 and 0.3 occupancies
respectively, as shown in the ORTEP diagram (Figure 3).
(4) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991,
91, 1237.
(5) Mustafi, D.; Makinen, M. W. J. Am. Chem. Soc. 1995, 117,
6739.
(6) (a) Beckwith, A. L. J. Tetrahedron 1981, 37, 3073.
(b) Beckwith, A. L. J.; Easton, C. J.; Lawrence, T.; Serelis,
A. K. Aus. J. Chem. 1983, 36, 545. (c) Dener, J. M.; Hart,
D. J.; Ramesh, S. J. Org. Chem. 1988, 53, 6022.
(d) Sharma, G. V. M.; Sreenivasa Rao, V. Tetrahedron Lett.
1990, 31, 4931. (e) Gomez, A. M.; Moreno, E.; Valverde,
S.; Lopez, J. C. Tetrahedron Lett. 2002, 43, 5559.
(f) Gomez, A. M.; Moreno, E.; Valverde, S.; Lopez, J. C.
Tetrahedron Lett. 2002, 43, 7863. (g) Gomez, A. M.;
Moreno, E.; Valverde, S.; Lopez, J. C. Tetrahedron:
Asymmetry 2003, 14, 2961. (h) Dupuy, C.; Crozet, M.-P.;
Surzur, J.-M. Bull. Soc. Chim. Fr. 1980, 361. (i) Bachi, M.
D.; Frolow, F.; Hoornaert, C. J. Org. Chem. 1983, 48, 1841.
(7) (a) Bachi, M. D.; Hoornaert, C. Tetrahedron Lett. 1981, 22,
2689. (b) Bachi, M. D.; Hoornaert, C. Tetrahedron Lett.
1982, 23, 2505. (c) Bachi, M. D.; Frolow, F.; Hoornaert, C.
J. Org. Chem. 1983, 48, 1841. (d) Knight, J.; Parsons, P.;
Southgate, R. J. Chem. Soc., Chem. Commun. 1986, 78.
(e) Just, G.; Sacripante, G. Can. J. Chem. 1987, 65, 104.
(f) Kametani, T.; Chu, S.-D.; Itoh, A.; Maeda, S.; Honda, T.
Heterocycles 1988, 27, 875. (g) Kametani, T.; Chu, S.-D.;
Itoh, A.; Maeda, S.; Honda, T. J. Org. Chem. 1988, 53,
2683. (h) Rocker, P. J.; Miller, M. J. J. Org. Chem. 1995, 60,
6176. (i) Bosch, E.; Bachi, M. D. J. Org. Chem. 1993, 58,
5581. (j) Banik, B. K.; Subbaraju, G. V.; Manhas, M. S.;
Bose, A. K. Tetrahedron Lett. 1996, 37, 1363. (k) Alcaide,
B.; Rodriguez-Campos, I. M.; Rodriguez-Lopez, J.;
Rodriguez-Vicente, A. J. Org. Chem. 1999, 64, 5377.
(l) Alcaide, B.; Almendros, P.; Aragoncillo, C. Org. Lett.
2003, 5, 3795. (m) Joshi, S. N.; Puranik, V. G.; Deshmukh,
A. R. A. S.; Bhawal, B. M. Tetrahedron: Asymmetry 2001,
12, 3073. (n) Joshi, S. N.; Phalgune, U. D.; Bhawal, B. M.;
Deshmukh, A. R. A. S. Tetrahedron Lett. 2003, 44, 1827.
(8) (a) Bose, A. K.; Manhas, M. S.; Hedge, V. R.; Wagle, D. R.;
Bari, S. S. J. Chem. Soc., Chem. Commun. 1986, 181.
(b) Bose, A. K.; Mathur, C.; Wagle, D. R.; Nagui, R.;
Manhas, M. S. Heterocycles 1994, 39, 491. (c) Hanessian,
S.; Desilets, D.; Rancourt, G.; Fosfin, R. Can. J. Chem.
1982, 60, 2292. (d) Koga, K.; Ikata, N.; Toshino, O. Chem.
Pharm. Bull. 1982, 30, 1929. (e) Bernardo, S. D.; Tengi, J.
P.; Sasso, G. J.; Weigele, M. J. Org. Chem. 1985, 50, 3457.
(f) Arun, M.; Joshi, S. N.; Puranik, V. G.; Bhawal, B. M.;
Deshmukh, A. R. A. S. Tetrahedron 2003, 59, 2309.
(9) Furniss, B.; Hann Ford, A. J.; Smith, P. W. G.; Tatchell, A.
R. Vogel’s Textbook of Practical Org. Chem. 1989, 5th ed.
654.
Scheme 4
A drastic change in the mode of radical cyclization is ob-
served with the change in stereochemistry of b-lactam nu-
cleus (Scheme 4). We believe that the steric control of
bulky substituents at C3 and sugar moiety at C4 positions
of azetidin-2-one ring help in tuning the regioselectivity
of cyclization. The electrostatic repulsion between the b-
lactam ring nitrogen and the furanose ring oxygen atoms
may be responsible for endo radical cyclization in 7
(Scheme 4). Radical addition to the triple bond was also
stereospecific and the newly formed C-C bond directed
anti to the acetonide group presumably due to the steric
interactions between the b-lactam ring and the acetonide
group. This unusual behavior in the mode of radical
cyclization was not observed in the case of N-allyl b-lac-
tams. Further study on intramolecular radical cyclization
of various substituted N-allyl as well as N-propargyl sub-
strates is in progress.
In conclusion, tributyltin hydride-AIBN mediated radical
cyclization of N-propargyl b-lactams was studied and the
observed products unambiguously proved the cyclization
to be stereospecific and substrate controlled, either 6-exo
or 7-endo depending on the stereochemistry of the b-lac-
tam ring.
Acknowledgment
The authors thank DST for financial support and CSIR for research
fellowships to AJ.
References
(1) For selected reviews, see: (a) Setti, E. L.; Micetich, R. G.
Curr. Med. Chem. 1998, 5, 101. (b) The Organic Chemistry
of b-Lactams; Georg, G. I., Ed.; VCH: New York, 1993.
(c) Neuhaus, F. C.; Georgeopapadakou, N. H. In Emerging
Targets in Antibacterial and Antifungal Chemotherapy;
Sutcliffe, J.; Georgeopapadakou, N. H., Eds.; Chapman and
Hall: New York, 1992. (d) Alcaide, B.; Almendros, P. Curr.
Org. Chem. 2002, 6, 245.
(10) Garegg, P. J.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1
1980, 2866.
(11) Daumas, M.; Vo-Quang, Y.; Vo-Quang, L.; Le Goffic, F.
Synthesis 1989, 64.
Synlett 2004, No. 7, 1249–1253 © Thieme Stuttgart · New York